Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Impact modified Nylon 66-Organoclay nanocomposites
Download
index.pdf
Date
2007
Author
Mert, Miray
Metadata
Show full item record
Item Usage Stats
61
views
55
downloads
Cite This
PA 66 nanocomposites and PA 66 blends were prepared using Cloisite 15A, Cloisite 25A and Cloisite 30B as organoclays and Lotader 2210 (E-BA-MAH), Lotader AX8840 (E-GMA) and Lotader AX8900 (E-MA-GMA) as impact modifiers. The effects of the composition, types of the components and the addition order of the nanocomposites on the morphology, mechanical, flow and thermal properties were investigated. Melt compounding step was carried out twice in a co-rotating twin-screw extruder. This was called as All-S mixing sequence when all the components were melt mixed, simultaneously. The concentration of the elastomer was determined as 5 wt% and the organoclay as 2 wt% to minimize agglomeration of the organoclay and decrease in the mechanical properties. The components which exhibited the best mechanical results and organoclay delamination in All-S mixing sequences were compounded by using different addition orders. Substantial increases were not observed in the tensile, impact, flexural and hardness test results of the nanocomposites compared to the polymer matrix that was twice extruded. Addition order of the components affected the properties of the nanocomposites and dispersion of the elastomeric domains and the organoclay. The best mechanical test results were obtained for All-S mixing sequence of (PA 66-15A-2210). The degree of organoclay dispersion is better in Cloisite 15A and Cloisite 25A containing nanocomposites than the ones which have Cloisite 30B. Low melt flow index values aided dispersion of the organoclay whereas the slight changes in the crystallinity did not significantly contribute to the changes in the mechanical properties of the nanocomposites or the blends.
Subject Keywords
Polymers.
,
Plastics.
URI
http://etd.lib.metu.edu.tr/upload/12608112/index.pdf
https://hdl.handle.net/11511/16611
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Impact modified polyamide-organoclay nanocomposites
Işık, Işıl; Yılmazer, Ülkü; Department of Chemical Engineering (2007)
The effects of melt state compounding and addition order of ethylene-butyl acrylate-maleic anhydride (E-BA-MAH), ethylene-glycidyl methacrylate (E-GMA), ethylene-methyl acrylate-glycidyl methacrylate (E-MA-GMA) terpolymer and/or three types of organoclays (Cloisite® 15A, 25A and 30B) on morphology, thermal, mechanical and dynamic mechanical properties of polyamide-6 are investigated. XRD patterns show that the interlayer spacing for Cloisite® 15A remained unchanged; however it increased for the organoclays ...
Synthesis and characterization of conducting copolymers of thiophene ended poly(ethyleneoxide) : their electrochromic properties and use in enzyme immobilization
Yıldız, Hüseyin Bekir; Toppare, Levent Kamil; Department of Chemistry (2007)
Thiophene ended poly(ethylene oxide) (ThPEO) and random copolymer (RPEO) of 3-methylthienyl methacrylate and p-vinylbenzyloxy poly (ethyleneoxide) units were synthesized chemically. Further graft copolymerization of RPEO and ThPEO with pyrrole (Py) and thiophene (Th) were achieved in H2O - sodium dodecylsulfate (SDS), H2O - p-toluenesulphonic acid (PTSA) and acetonitrile (AN) - tetrabutylammonium tetrafluoroborate (TBAFB) solvent electrolyte couples via constant potential electrolyses. Characterizations wer...
Flame retardancy of polyamide compounds and micro/nano composites
Gündüz, Hüseyin Özgür; Kaynak, Cevdet; Department of Polymer Science and Technology (2009)
In the first part of this dissertation, glass fiber reinforced/unreinforced polyamide 6 (PA6) and polyamide 66 (PA66) were compounded with three different flame retardants, which were melamine cyanurate, red phosphorus and brominated epoxy with antimony trioxide, by using an industrial scale twin screw extruder. Then, to investigate flame retardancy of these specimens, UL-94, Limiting Oxygen Index (LOI) and Mass Loss Cone Calorimeter (MLC) tests were carried out. In addition to flammability tests, thermogra...
Spray coatable electrochromic dioxythiophene polymers with high coloration efficiencies
REEVES, Benjamin D.; GRENIER, Christophe R.G.; ARGUN, Avni A.; Çırpan, Ali; MCCARLEY, Tracy D.; REYNOLDS, John R. (2004-10-05)
Four new disubstituted propylenedioxythiophene polymers have been synthesized by Grignard metathesis on the 1-5 g scale. All polymers were found to be soluble in chloroform, methylene chloride, toluene, and tetrahydrofuran and were fully structurally characterized having GPC determined number-average molecular weights ranging from 33000 to 47000 g mol(-1). Dilute polymer solutions in toluene exhibited strong red fluorescence with moderate quantum efficiencies from 0.38 to 0.50. Homogeneous thin films were f...
Ternary nanocomposites of high density, linear low density and low density polyethylenes
Uçar, Egemen; Yılmazer, Ülkü; Department of Polymer Science and Technology (2007)
In this study, the effects of organoclay loading, compatibilizer loading and polyethylene type on the morphology, rheology, thermal properties and mechanical properties of polyethylene/compatibilizer/organoclay nanocomposites were investigated. As compatibilizer, terpolymer of ethylene-methacrylate-glycidyl methacrylate (Lotader® AX8900), as organoclay Cloisite® 15A were used. All samples were prepared by a co-rotating twin screw extruder, followed by injection molding. Considering ternary nanocomposites, h...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Mert, “Impact modified Nylon 66-Organoclay nanocomposites,” M.S. - Master of Science, Middle East Technical University, 2007.