Development of organic-inorganic composite membranes for fuel cell applications

Erdener, Hülya
Hydrogen is considered to be the most promising energy carrier of the 21st century due to its high energy density and sustainability. The chemical energy of hydrogen can be directly converted into electricity by means of electrochemical devices called fuel cells. Proton exchange membrane fuel cells (PEMFC) are the most preferred type of fuel cells due to their low operating temperatures enabling fast and easy start-ups and quick responses to load changes. One of the most important components of a PEMFC is the proton conducting membrane. The current membrane technology is based on perfluorosulfonic acid membranes and the most common one being Nafion. Although these membranes have good thermal and chemical stability, mechanical strength and high proton conductivities, they tend to dehydrate very fast at high temperatures and low relative humidity leading to poor fuel cell performances. Moreover, the high manufacturing cost of these membranes limits the mass-production of PEMFC’s in near future. The aim of this study is to develop alternative PEMFC membranes that have sufficient thermal and chemical stability, mechanical strength and comparable proton conductivity and fuel cell performances with Nafion membranes at relatively low cost. In this context, organic-inorganic composite membranes and blends were developed. A relatively cheap and commercially available polymer, polyether ether ketone, (PEEK), was chosen as the membrane matrix for its high thermal and mechanical stability and improvable proton conductivity via post-sulfonation. The proton conductivity of SPEEK membrane (at DS 68%) was 0.06 S/cm at 60°C, and this conductivity was further increased to 0.13 S/cm with the introduction of zeolite beta crystals as inorganic fillers. The conductivity of a SPEEK blend (25wt% SPES-75wt% SPEEK) membrane was 0.08 S/cm at 90°C. In PEMFC performance tests, 397 mA/cm2 was obtained for SPEEK membrane (DS 56%) at 0.6V for a H2/O2 PEMFC working at 1 atm and 80°C. This result is promising when compared to the performance of Nafion 112® of 660mA/cm2 under same conditions. These results are welcomed since the target for commercially viable alternate membranes are reached.


Sorption enhanced ethanol reforming over cobalt, nickel incorporated mcm-41 for hydrogen production
Gündüz, Seval; Doğu, Timur; Department of Chemical Engineering (2011)
The interest in hydrogen as a clean energy source has increased due to depletion of limited fossil resources and environmental impact related to CO2 emissions. Hydrogen production from bio-ethanol, which already contains large amount of water, by steam reforming reaction, has shown excellent potential with CO2 neutrality. However, steam reforming of ethanol reaction is a highly complex process including many side reactions which decrease hydrogen yield and have a negative effect on process economy. Also, th...
Steam reforming of ethanol for hydrogen production using Cu-MCM41 and Ni-MCM41 type mesoporous catalytic materials
Özdoğan, Ekin; Doğu, Timur; Department of Chemical Engineering (2007)
The world’s being alerted to the global warming danger and the depletion of fossil fuel resources, has increased the importance of the clean and renewable hydrogen energy. Bioethanol has high potential to be used as a resource of hydrogen since it is a non-petroleum feedstock and it is able to produce hydrogen rich mixture by steam reforming reactions. Discovery of mesoporous MCM-41 type high surface area silicate-structured materials with narrow pore size distributions (20-100 Å) and high surface areas (up...
Development of different carbon supports for proton exchange membrane fuel cell electrocatalysts
Güvenatam, Burcu; Eroğlu, İnci; Bayrakçeken, Ayşe; Department of Chemical Engineering (2010)
Proton exchange membrane (PEM) fuel cell technology is promissing alternative solution to today’s energy concerns providing clean environment and efficient system. Decreasing platinum (Pt) content of fuel cell is one of the main goals to reduce high costs of fuel cell technology in the way of commercialization. In this target, porous carbons provide an alternative solution as a support material for fuel cell electrocatalysts. It is also essential to increase surface area of carbon support material to have w...
Synthesis of some metalophthalocyanines and their effects on the performance of pem fuel cells
Erkan, Serdar; Eroğlu, İnci; Department of Chemical Engineering (2005)
Importance of clean, sustainable and renewable energy sources are increasing gradually because of either being environmental friendly or being alternative for fossil fuels. Hydrogen energy system will let the utilization of alternative energy sources. Fuel cells are the most suitable energy conversion devices while passing through the hydrogen economy. The cost of the fuel cell systems need to be reduced in order to achieve commercialization of these systems. One of the most important cost items is platinum...
Process development for continuous photofermentative hydrogen production
Boran, Efe; Eroğlu, İnci; Özgür, Ebru; Department of Chemical Engineering (2011)
By the integration of dark and photo fermentative hydrogen production processes, higher yields of hydrogen can be obtained from biomass. In the first step, biomass is utilized for hydrogen production by dark fermentation and in the second step, the effluent of dark fermentation is further utilized for hydrogen production by photofermentation using photosynthetic purple non-sulfur bacteria. The purpose of this study was to develop a solar pilot scale tubular photobioreactor (PBR) for continuous photo ferment...
Citation Formats
H. Erdener, “Development of organic-inorganic composite membranes for fuel cell applications,” M.S. - Master of Science, Middle East Technical University, 2007.