An investigation of compacted graphite cast iron production by means of thermal analysis technique and other process control windows

Download
2007
El-Mabrouk, Omar
Compacted graphite irons have been proved valuable in many applications such as exhaust manifolds, hydraulic valves, and diesel engine blocks, the process of producing compacted graphite irons is not a straight forward process because of its narrow processing windows and its high sensitivity to the section thickness, treatment reaction time, pouring temperatures and charge composition. In this thesis, compacted graphite was produced with minimum variations through all section thickness and the effect of Mg/S ratio, section thickness, and treatment agents on the graphite morphology, electrical resistivity property and fracture strength at high temperatures was investigated. The range of Mg/S ratio and the section thickness was from 2/3 to 7/1 and 5 mm to 40 mm respectively. FeSiMg and FeSiMg cermish metal were used as a treatment agent. Optical metallographic method was implemented to investigate the graphite morphology change. For being a distinguishable characteristic for compacted graphite iron over ductile iron, thermal conductivity changes at high temperatures ranging from room temperature to 500 0C was examined by a suitable electrical setup in the manner of electrical conductivity changes by measuring the electrical resistance. On the other hand, due to the higher values of mechanical properties of compacted graphite iron over those of gray iron, tensile strength was also examined by means of tensile test. The relation between the compacted graphite shape and the alloy properties such as fracture strength and thermal conductivity was investigated. The most important controlling parameters to produce compacted graphite are Mg/S ratio and oxygen activity. The relation between these parameters with both fracture strength and thermal conductivity was established by means of multiple regression analysis technique.

Suggestions

Production of coal crusher hammer heads by bi-metal casting
Kırma, Turgut; Selçuk, Ekrem; Department of Metallurgical and Materials Engineering (2008)
In this study, by considering different mechanical properties such as wear resistance and toughness of two different metal alloys in design and production stages, bi-metal casting technique was used for producing composite material which will be a solution for the cracking and wear problem in coal crushing hammer heads. The failure analysis of the classical hammer heads which are made from Hadfield steels (austenitic steel) showed that there are crack formations through austenitic grains and also the phase ...
Characterization of ultra-fine grained steel samples produced by high pressure torsion via magnetic barkhausen noise analysis
Bayramoğlu, Sadık; Gür, Cemil Hakan; Department of Metallurgical and Materials Engineering (2009)
High Pressure Torsion (HPT) is one of the most widely used severe plastic deformation methods which enable to obtain a crack free ultra-fine grained bulk material with improved mechanical properties like increased strength and toughness. In the process, a disc shaped sample is pressed between two anvils and deformed via surface friction forces by rotating one of the anvils. The aim of this study is to nondestructively characterize the variations in the deformation uniformity of the severely deformed steel d...
Investigation of the effect of dissimilar channel angular pressing method to the mechanical and microstuctural properties of 6061 aluminum alloy sheets
Kibar, Alp Aykut; Gür, Cemil Hakan; Department of Metallurgical and Materials Engineering (2010)
Dissimilar Channel Angular Pressing (DCAP) method is an effective Severe Plastic Deformation (SPD) technique to improve the mechanical properties of sheets or strips by producing ultrafine grains. The aim of this study is to investigate the evolution of the microstructure and the improvement in mechanical properties of 6061 Al-alloy strips deformed by DCAP up to 5 passes. Mechanical properties such as hardness and strength have been observed to increase up to a certain strain level depending on the microstr...
Investigating the formation of intermetallic compounds during friction stir welding of magnesium alloy to aluminum alloy in air and under liquid nitrogen
Mofid, M. A.; Abdollah-zadeh, A.; Gür, Cemil Hakan (Springer Science and Business Media LLC, 2014-03-01)
This research demonstrates the use of submerged friction stir welding under liquid nitrogen as an alternative and improved method for creating fine-grained welds, and hence, to alleviate formation of intermetallic phases. Magnesium alloy and aluminum alloy were joined by friction stir welding in two environments, namely air and liquid nitrogen, with 400 rpm rotation and 50 mm/min travel speed. The temperature profile, microstructure, scanning electron microscope energy dispersive X-ray spectroscopy analysis...
Production and characterization of high performance al – fe – v – si alloys for elevated temperature applications
Sayılgan, Seda; Kalkanlı, Ali; Department of Metallurgical and Materials Engineering (2009)
In the present study, the powder metallurgy was evaluated as a technique to produce high performance Al – 8Fe – 1.7V – 7.9Si (wt%) alloys for elevated temperature applications and the role of powder particle size range and extrusion ratio in the microstructural and mechanical properties of the extruded alloys was investigated. For this purpose, an air atomization method was employed to produce powders of the high temperature alloy and after that the produced powders were sieved and cold compacted. The compa...
Citation Formats
O. El-Mabrouk, “An investigation of compacted graphite cast iron production by means of thermal analysis technique and other process control windows,” Ph.D. - Doctoral Program, Middle East Technical University, 2007.