Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Frequently Asked Questions
Frequently Asked Questions
Communities & Collections
Communities & Collections
Recovery of zinc and lead from Çinkur leach residues by using hydrometallurgical techniques
Download
index.pdf
Date
2007
Author
Rüşen, Aydın
Metadata
Show full item record
Item Usage Stats
3
views
5
downloads
In this thesis, it was aimed to select and propose a feasible method, or series of methods, for the recovery of zinc (Zn) and lead (Pb) that are present in disposed ÇİNKUR leach residues having 12.43 % Zn, 15.51 % Pb and 6.27 % Fe. Initially, physical, chemical and mineralogical characterizations of the leach residues were done. Results of these analyses showed that lead was present as lead sulfate (PbSO4), and zinc was present as zinc sulfate heptahydrate (ZnSO4.7H2O), zinc ferrite (ZnFe2O4) and zinc silicate (2ZnO.SiO2) in the leach residues. Initially, water leaching experiments were carried out to determine water soluble amount of blended leach residue, and the maximum zinc recovery was obtained as 18 %. After these trials, sulphuric acid and brine leaching were used to recover zinc and lead, respectively. Firstly, due to the insufficient recovery in water leaching trials acid leaching experiments were done for zinc recovery and the parameters studied were acid concentration, reaction duration, leaching temperature and solid-liquid ratio (pulp density). About 72 % Zn was recovered after hot acid leaching by using 150 g/l H2SO4 at 95 oC in 2 hours with a pulp density of 200 g/l. For lead recovery brine leaching experiments were done with the secondary leach residue obtained after H2SO4 leaching. In brine leaching experiments, NaCl concentration, pulp density (solid/liquid ratio), reaction duration and leaching temperature were chosen as variables. Effect of HCl addition was also investigated. In brine leaching while lead recoveries up to 98 % could be attained at a low pulp density in laboratory scale, the maximum recovery obtained was 84.9 % at a high pulp density (200 g/l) with 300 g/l NaCl concentration in 10 minutes at 95 oC.
Subject Keywords
Metallurgy
URI
http://etd.lib.metu.edu.tr/upload/12608669/index.pdf
https://hdl.handle.net/11511/17053
Collections
Graduate School of Natural and Applied Sciences, Thesis