Hide/Show Apps

Transcription pattern comparison of two ubiquitin specific proteases (usp6 and usp32)

Tabası, Shiva Akhavan
The incidence of breast cancer is 1 in 8 among women. Usually loss of tumor suppressor genes and overexpression of proto-oncogenes are known to be involved during mammary tumorigenesis. USP32 (Ubiquitin Specific Protease 32) gene is located on chromosomal band 17q23, a region of amplification in breast cancer. Gene amplification is known to be a common mechanism in breast cancer cells, through which proto-oncogenes are overexpressed and contribute to tumor progression. Presence of multiple oncogene candidates on 17q23 requires individual characterization of these genes. USPs (Ubiquitin Specific Protease), have various roles in protein degradation pathways (e.g; by editing the ubiquitin chains, recycling of ubiquitin, v deubiquitinating the target proteins and inhibiting their degradation by the proteasome). Deregulated expression of USPs is likely to interfere with the degradation of many key regulatory proteins in the cell. Therefore, USP32 becomes an interesting oncogene candidate that may have roles in protein degradation pathways based on the fact that it is located on an amplicon region and that it is overexpressed in breast tumors. On the other hand, USP6 (Ubiquitin Specific Protease 6), a known oncogene on 17p13, is also a deubiquitinating enzyme, with conserved histidine and cysteine domains, which are also shared by USP32. Interestingly there is a 97% sequence similarity between bases 3,197 to 7,831 of USP6 and 2,390 to 7,024 of USP32 gene. In this study, we aimed to investigate the expression patterns of USP32 and USP6 (including alternative transcripts) in breast tissue to avoid any possibility of overlapping functions of two enzymes due to their high sequence similarity. In addition, we sub-cloned USP32 gene into TOPO-TA vector, so that further functional studies (e.g; localization and overexpression) can be performed. Further characterizations of Ubiquitin Specific Protease 32, may help us understand its importance in the protein degradation pathway during breast tumorigenesis.