Low altitude radar wave propagation modelling

Download
2007
Şengül, Orhan
In this PhD thesis, propagation aspects of low altitude radar performance have been modeled using geometrical optics. Both the path propagation factor and the radar clutter have been modeled. Such models already exist at various complexity levels, such as round earth specular reflection combined with knife edge hill diffraction [SEKE:IEEE,Ap- 34,No:8,1980] and round earth and slant plateau reflection combined with hill diffraction [RADCAL: 1988-2000,EE,METU]. In the proposed model we have considered an extension to RADCAL’s model to include convex and concave slant plateaus between hills and depressions (troughs). This propagation model uses a reflection model based on the Geometrical Theory of Reflection for the convex and concave surfaces. Also, back scattering from surface (clutter) is formulated for the new model of the terrain profile. The effects of the features of the terrain profile on the path propagation factor have been investigated. A real terrain data have been smoothed on the basis of the above study. In order to verify the formulation, the Divergence and Convergence Factors associated with the convex and concave plateaus, respectively are inserted into the RADCAL program. The chosen terrains have convex or concave plateaus in the model. The output of the RADCAL is compared with measured values and other propagation algorithms such as Forward-Backward Spectrally Accelerated (FBSA) [FBSA:IEEE Vol.53, No:9,2005] and Parabolic Equation Method [TPEM:IEEE Vol.42,No:1,1994]. Moreover, as the RADCAL Propagation model is based on the ray optics, the results are also compared with another ray optics based propagation model. For this purpose the results of SEKE [Lincoln Lab.] propagation model are used. SEKE model has been used to compute path loss for different types of terrain as a function of receiving antenna height at a fixed distance between transmit and receive antennas. For Beiseker W35 Terrain profile, the results of RADCAL, SEKE and measurements are compared. All results are in good agreement with those of RADCAL.

Suggestions

Computation of radar cross sections of complex targets by physical optics with modified surface normals
Durgun, Ahmet Cemal; Kuzuoğlu, Mustafa; Department of Electrical and Electronics Engineering (2008)
In this study, a computer code is developed in MATLAB® to compute the Radar Cross Section (RCS) of arbitrary shaped complex targets by using Physical Optics (PO) and Modified PO. To increase the computational efficiency of the code, a novel fast integration procedure for oscillatory integrals, called Levin’s integration, is applied to PO integrals. In order to improve the performance of PO near grazing angles and to model diffraction effects, a method called PO with Modified Surface Normal Vectors is implem...
Leo satellites : dynamic modelling, simulations and some nonlinear attitude control techniques
Karataş, Soner; Kocaoğlan, Erol; Department of Electrical and Electronics Engineering (2006)
In this thesis nonlinear control method techniques are investigated to control the attitude of Low Earth Orbit satellites. Nonlinear control methods are compared with linear control methods. Simulations are done using Matlab and Simulink software and BILSAT-1 parameters are used in the simulations. Reaction wheels are used as the actuator.
High performance readout electronics for uncooled infrared detector arrays
Yıldırım, Ömer Özgür; Akın, Tayfun; Department of Electrical and Electronics Engineering (2006)
This thesis reports the development of high performance readout electronics for resistive microbolometer detector arrays that are used for uncooled infrared imaging. Three different readout chips are designed and fabricated by using a standard 0.6 m CMOS process. Fabricated chips include a conventional capacitive transimpedance amplifier (CTIA) type readout circuit, a novel readout circuit with dynamic resistance nonuniformity compensation capability, and a new improved version of the CTIA circuit. The fabr...
Direction finding for coherent, cyclostationary signals via a uniform circular array
Atalay Çetinkaya, Burcu; Koç, Arzu; Department of Electrical and Electronics Engineering (2009)
In this thesis work, Cyclic Root MUSIC method is integrated with spatial smoothing and interpolation techniques to estimate the direction of arrivals of coherent,cyclostationary signals received via a Uniform Circular Array (UCA). Cyclic Root MUSIC and Conventional Root MUSIC algorithms are compared for various signal scenarios by computer simulations. A cyclostationary process is a random process with probabilistic parameters, such as the autocorrelation function, that vary periodically with time. Most of ...
Real time color based object tracking
Özzaman, Gökhan; Erkmen, İsmet; Department of Electrical and Electronics Engineering (2005)
A method for real time tracking of non-rigid arbitrary objects is proposed in this study. The approach builds on and extends work on multidimensional color histogram based target representation, which is enhanced by spatial masking with a monotonically decreasing kernel profile prior to back-projection. The masking suppresses the influence of the background pixels and induces a spatially smooth target model representation suitable for gradient-based optimization. The main idea behind this approach is that a...
Citation Formats
O. Şengül, “Low altitude radar wave propagation modelling,” Ph.D. - Doctoral Program, Middle East Technical University, 2007.