Lateral stiffness of unstiffened steel plate shear wall systems

Download
2008
Atasoy, Mehmet
Finite element method and strip method are two widely used techniques for analyzing steel plate shear wall (SPSW) systems. Past research mostly focused on the prediction of lateral load capacity of these systems using these numerical methods. Apart from the lateral load carrying capacity, the lateral stiffness of the wall system needs to be determined for a satisfactory design. Lateral displacements and the fundamental natural frequency of the SPSW system are directly influenced by the lateral stiffness. In this study the accuracy of the finite element method and strip method of analysis are assessed by making comparisons with experimental findings. Comparisons revealed that both methods provide in general solutions with acceptable accuracy. While both methods offer acceptable solutions sophisticated computer models need to be generated. In this study two alternative methods are developed. The first one is an approximate hand method based on the deep beam theory. The classical deep beam theory is modified in the light of parametric studies performed on restrained thin plates under pure shear and pure bending. The second one is a computer method based on truss analogy. Stiffness predictions using the two alternative methods are found to compare well with the experimental findings. In addition, lateral stiffness predictions of the alternate methods are compared against the solutions provided using finite element and strip method of analysis for a class of test structures. These comparisons revealed that the developed methods provide estimates with acceptable accuracy and are simpler than the traditional analysis techniques.

Suggestions

Lateral stiffness of steel plate shear wall systems
Topkaya, Cem (Elsevier BV, 2009-08-01)
The accuracy of the finite element method and strip method of analysis for calculating the lateral stiffness of steel plate shear wall (SPSW) systems is assessed by making comparisons with experimental findings. Comparisons revealed that while both methods provide acceptable accuracy, they also require the generation of sophisticated computer models. In this paper, two alternative methods are developed. The first one is an approximate hand method based on the deep beam theory. The classical deep beam theory...
FINITE-ELEMENT ANALYSIS OF PRESTRESSED AND REINFORCED-CONCRETE STRUCTURES
ELMEZAINI, N; CITIPITIOGLU, E (American Society of Civil Engineers (ASCE), 1991-10-01)
A practical and powerful technique for the discrete representation of reinforcement in finite element analysis of prestressed and reinforced concrete structures is presented. Isoparametric quadratic and cubic finite elements with movable nodes are developed utilizing a correction technique for mapping distortion. Reinforcing bars and/or prestressing tendons are modeled independently of the concrete mesh. Perfect or no bond as well as any bond-slip model can easily be represented. The procedure is succes...
Computational elastodynamics of functionally graded thick-walled cylinders and annular coatings subjected to pressure shocks
Abeidi, Abdelrahim; Dağ, Serkan (2022-12-01)
A computational technique based on domain-boundary element method (D-BEM) is developed for elastodynamic analysis of functionally graded thick-walled cylinders and annular coatings subjected to pressure shock type of loadings. The formulation is built on the wave equation, which is derived in accordance with plane elastody-namics. Weighted residual statement for the wave equation is expressed by using the static fundamental solution as the weight function. Applying integration by parts and incorporating the...
Sliding frictional contact between a rigid punch and a laterally graded elastic medium
Dağ, Serkan; Yidirim, Bora; Ozatag, A. Cihan (2009-11-01)
Analytical and computational methods are developed for contact mechanics analysis of functionally graded materials (FGMs) that possess elastic gradation in the lateral direction. In the analytical formulation, the problem of a laterally graded half-plane in sliding frictional contact with a rigid punch of an arbitrary profile is considered. The governing partial differential equations and the boundary conditions of the problem are satisfied through the use of Fourier transformation. The problem is then redu...
Lateral load testing of an existing two story masonry building up to near collapse
Aldemir, Alper; Binici, Barış; Canbay, Erdem; Yakut, Ahmet (2017-08-01)
Laboratory testing, although necessary to understand failure mechanisms of individual masonry walls, spandrels or small scale building models, cannot fully mimic the real system behavior of masonry structures. In order to observe the performance of an existing two story masonry structure, cyclic lateral load testing up to near collapse was conducted. The test building was sliced approximately in the middle through the reinforced concrete slabs of both stories and one side was strengthened with the objective...
Citation Formats
M. Atasoy, “Lateral stiffness of unstiffened steel plate shear wall systems,” M.S. - Master of Science, Middle East Technical University, 2008.