Probabilistic seismic hazard analysis : a sensitivity study with respect to different models

Yılmaz Öztürk, Nazan
Due to the randomness inherent in the occurrence of earthquakes with respect to time, space and magnitude as well as other various sources of uncertainties, seismic hazard assessment should be carried out in a probabilistic manner. Basic steps of probabilistic seismic hazard analysis are the delineation of seismic sources, assessment of the earthquake occurrence characteristics for each seismic source, selection of the appropriate ground motion attenuation relationship and identification of the site characteristics. Seismic sources can be modeled as area and line sources. Also, the seismic activity that can not be related with any major seismic sources can be treated as background source in which the seismicity is assumed to be uniform or spatially smoothed. Exponentially distributed magnitude and characteristic earthquake models are often used to describe the magnitude recurrence relationship. Poisson and renewal models are used to model the occurrence of earthquakes in the time domain. In this study, the sensitivity of seismic hazard results to the models associated with the different assumptions mentioned above is investigated. The effects of different sources of uncertainties involved in probabilistic seismic hazard analysis methodology to the results are investigated for a number of sites with different distances to a single fault. Two case studies are carried out to examine the influence of different assumptions on the final results based on real data as well as to illustrate the implementation of probabilistic seismic hazard analysis methodology for a large region (e.g. a country) and a smaller region (e.g. a province).
Citation Formats
N. Yılmaz Öztürk, “Probabilistic seismic hazard analysis : a sensitivity study with respect to different models,” Ph.D. - Doctoral Program, Middle East Technical University, 2008.