Hide/Show Apps

Sulfonated styrene-co-maleic acid and its derivatives as superplasticizers in concrete

Yeniay, Seçil
In the past three decades, a new group of concrete admixtures, termed “superplasticizers”, were introduced to the concrete industry. They have gained wide acceptance because of their many advantages. The addition of superplasticizers to concrete improves the workability and strength of concrete. In this study, the effect of the chemical structure of poly (4-styrenesulfonic acid-co-maleic acid) sodium salt (SSAMA), which contains both sulfonic and carboxylic acid groups, which is a new superplasticizer, was analyzed. Two different molecular weights of PEG (polyethylene glycol monomethyl ether) were grafted to this water-soluble copolymer at different weight compositions. The structures of synthesized copolymers were verified by FTIR and NMR analyses. The molecular weight difference of the grafted copolymers with different side chain lengths was determined by dilute solution viscosimetry. The effects of chemical structure of grafted copolymers on the fluidity of cement paste and the mechanical properties of the mortars were investigated. The zeta potential measurements revealed the interactions between the cement particles and polycarboxylate type superplasticizers. The maximum fluidity was achieved for the PEG grafted copolymer with the weight ratio 3:3. The mechanical properties of this copolymer showed the highest flexural and compressive strength compared to other copolymers. The addition of various Li salts to SSAMA affected the ionic medium, therefore, the dispersion performance of cement paste and the mechanical properties of the mortars improved. The mixture of LiCl: SSAMA in 1:1 mol ratio exhibited the maximum fluidity compared to other Li salts and their compositions. This mixture gave the highest flexural strength but the mixture of Li2CO3 in 1:1 composition gave the highest compressive strength in each salt mixtures.