Fabrication and characterization of aluminum oxide and silicon/aluminum oxide films with si nanocrystals formed by magnetron co-sputtering technique

Download
2008
Doğan, İlker
DC and RF magnetron co-sputtering techniques are one of the most suitable techniques in fabrication of thin films with different compositions. In this work, Al2O3 and Si/Al2O3 thin films were fabricated by using magnetron co-sputtering technique. For Al2O3 films, the stoichiometric, optical and crystallographic analyses were performed. For Si contained Al2O3 films, the formation conditions of Si nanocrystals were investigated. To do so, these thin films were sputtered on Si (100) substrates. Post annealing was done in order to clarify the evolution of Al2O3 matrix and Si nanocrystals at different temperatures. Crystallographic properties and size of the nanocrystals were investigated by X-ray diffraction (XRD) method. The variation of the atomic concentrations and bond formations were investigated with X-ray photoelectron spectroscopy (XPS). The luminescent behaviors of Si nanocrystals and Al2O3 matrix were investigated with photoluminescence (PL) spectroscopy. Finally, the characteristic emissions from the matrix and the nanocrystals were separately identified.

Suggestions

Development of software for calculations of the reflectance, transmittance and absorptance of multilayered thin films
Şimşek, Yusuf; Esendemir, Akif; Department of Physics (2008)
The aim of this study is to develop a software which calculates reflection, transmission and absorption of multilayered thin films by using complex indices of refraction, as a function of both wavelength and thickness. For these calculations matrix methods will be considered and this software is programmed with the matrix method. Outputs of the program will be compared with the theoretical and experimental results studied in the scientific papers.
Layer-by-layer deposition of tannic acid and poly(2isopropyl-2-oxazoline) onto iron oxide nanoparticles
Akbar, Majid; Erel Göktepe, İrem; Department of Polymer Science and Technology (2017)
Layer-by-layer (LbL) technique is a simple and unique technique for fabrication of thin films. It is possible to control the film properties during assembly and post-assembly steps. Stimuli responsive polymers are important building blocks for LbL assembly, especially for drug delivery applications of LbL films. Iron oxide nanoparticles have been of interest for biomedical applications such as bioimaging and/or drug delivery via magnetothermal trigger. This thesis study aimed to develop strategies for layer...
Improvement of impact resistance of aluminum and zinc based die cast parts by means of tool steel inserts
Kamberoğlu, Murat; Kalkanlı, Ali; Department of Metallurgical and Materials Engineering (2011)
High Pressure Die Casting (HPDC) is low-cost technique for the mass production of complex, non-ferrous parts. Despite its benefits such as dimensional accuracy, surface quality and high production rate; some mechanical drawbacks limit use of HPDC in production of critical parts especially under dynamical loads. This study aims to improve impact resistance and surface hardness of die cast parts by means of tool steel inserts. These inserts act as a barrier between the impactor and die casting alloy, in order...
Deep-trench RIE optimization for high performance MEMS microsensors
Aydemir, Akın; Turan, Raşit; Department of Physics (2007)
This thesis presents the optimization of deep reactive ion etching process (DRIE) to achieve high precision 3-dimensional integrated micro electro mechanical systems (MEMS) sensors with high aspect ratio structures. Two optimization processes have been performed to achieve 20 μm depth for 1 μm opening for a dissolved wafer process (DWP) and to achieve 100 μm depth for 1 μm opening for silicon-on-glass (SOG) process. A number of parameters affecting the etch rate and profile angle are investigated, including...
Development of atomic force microscopy system and kelvin probe microscopy system for use in semiconductor nanocrystal characterization
Bostancı, Umut; Turan, Raşit; Department of Physics (2007)
Atomic Force Microscopy (AFM) and Kelvin Probe Microscopy (KPM) are two surface characterization methods suitable for semiconductor nanocrystal applications. In this thesis work, an AFM system with KPM capability was developed and implemented. It was observed that, the effect of electrostatic interaction of the probe cantilever with the sample can be significantly reduced by using higher order resonant modes for Kelvin force detection. Germanium nanocrystals were grown on silicon substrate using different g...
Citation Formats
İ. Doğan, “Fabrication and characterization of aluminum oxide and silicon/aluminum oxide films with si nanocrystals formed by magnetron co-sputtering technique,” M.S. - Master of Science, Middle East Technical University, 2008.