Timing issues in a terawatt laser system

Download
2008
Yılmaz, Remziye Pınar
In the laser market, there have been various kinds of lasers designed and utilized for different purposes. As time goes on, their powers have been gradually increased from kilowatts (kW) to terawatts (TW). One of the most famous methods in laser science technology is Chirped Pulse Amplification (CPA) which enables table-top terawatt laser systems. This method provides high output power (tens of TW), very short pulse duration (few tens of femtoseconds) and large energy (mJ) for ultrafast lasers. One of the most well-known ultrafast lasers is Titanium:Sapphire laser. This thesis work concentrates on how delay a pulse generator should work so that Verdi and the oscillator pulse coincide. Moreover, by assembling a terawatt laser system, the most important issues are timing between seed pulse and pump pulse and time delays of all components of this system; autocorrelator, pump source, photodiode, Pockels cell, stretcher and dazzler were examined. This timing and the time delays were separately identified for terawatt laser systems. In this study, the aim is to attain the terawatt level output by arranging pump and seed pulses timing and the time delay on the components of the laser system setup.

Suggestions

Development of a compact time-domain terahertz spectrometer using photoconductive antenna detection method
Güngör Erözbek, Ümmügül; Altan, Hakan; Department of Physics (2009)
In this thesis, we describe the development of a time-domain terahertz (THz) spectrometer driven by two different laser sources: an Er-doped femtosecond fiber laser and a mode-locked Ti:Sapphire laser. The resulting THz electromagnetic radiation was generated and detected using photoconductive antenna detection methods in both systems. In these experiments we characterized the THz power output for both the fiber laser driven system and the Ti:Sapphire laser driven system. Emphasis is given throughout this t...
Design and analysis of ultrashort femtosecond laser amplifiers
Doğan, Ersin; Bilikmen, Kadri Sinan; Department of Physics (2006)
This thesis presents a compact femtosecond laser amplifier design for optical preamplifiers and power amplifiers consist of theoretical perspective, simulations to analyze and optimize beam performance. The propagation through optical media is simulated for every optical component such as mirrors and nonlinear crystal separately and suggested realignment of these components required increasing amplifier performance. Finally Gaussian beam propagation and aberration compensation has been conducted.
Imaging of metal surfaces using confocal laser scanning microscopy
Yıldız, Bilge Can; Altan, Hakan; Department of Physics (2011)
Optical imaging techniques have improved much over the last fifty years since the invention of the laser. With a high brightness source many imaging applications which were once inaccessible to researchers have now become a reality. Among these techniques, the most beneficial one is the use of lasers for both wide-field and confocal imaging systems. The aim of this study was to design a laser imaging system based on the concept of laser scanning confocal microscopy. Specifically the optical system was based...
Non-linear optical properties of two dimensional quantum well structures
Ağanoğlu, Ruzin; Tomak, Mehmet; Department of Physics (2006)
In this work optical properties of two dimensional quantum well structures are studied. Variational calculation of the eigenstates in an isolated quantum well structure with and without the external electrical field is presented. At weak fields a quadratic Stark shift is found whose magnitude depends strongly on the finite well depth. It is observed that under external electrical field, the asymmetries due to lack of inversion symmetry leads to higher order nonlinear optical effects such as second order opt...
Thermal refocusing method for spaceborne high-resolution optical imagers
Selimoglu, Ozgur; Ekinci, Mustafa; Karci, Ozgur (2016-05-20)
We describe the design of a thermal refocusing method for spaceborne high-resolution imagers where Korsch optical design is usually implemented. The secondary mirror is made of aluminum, a high thermal expansion coefficient material, instead of conventional zero-expansion glass ceramics. In this way, the radius of the curvature can be controlled by means of temperature change of the mirror. Change in the radius of curvature also changes the effective focal length of the camera which is used for compensation...
Citation Formats
R. P. Yılmaz, “Timing issues in a terawatt laser system,” M.S. - Master of Science, Middle East Technical University, 2008.