Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Jk-integral formulation and implementation for thermally loaded orthotropic functionally graded materials
Download
index.pdf
Date
2008
Author
Arman, Eyüp Erhan
Metadata
Show full item record
Item Usage Stats
0
views
1
downloads
The main aim of this study is to utilize a Jk-integral based computational method in order to calculate crack tip parameters for orthotropic functionally graded materials (FGMs). The crack is subjected to mixed mode thermal loading. Mixed mode thermal fracture analysis requires the calculation of mode-I and mode-II stress intensity factors (KI ,KII ). In addition to stress intensity factors, energy release rate and T-stress are calculated by means of Jk-integral. Jk-integral is defined as a line integral over a vanishingly small curve. Since it is difficult to deal with a line integral on a vanishing curve , Jk-integral is converted to a domain independent form containing area and line integrals by the help of plane thermoelasticity constitutive relations. Steady-state temperature distribution profiles in FGMs and the components of the Jk-integral are computed by means of the finite element method. In both thermal and structural analyses, finite element models that possess graded isoparametric elements are created in the general purpose finite element analysis software ANSYS. In the formulation of Jk-integral, all required engineering material properties are assumed to possess continuous spatial variations through the functionally graded medium. The numerical results are compared to the results obtained from Displacement Correlation Technique (DCT). The domain independence of Jk-integral is also demonstrated. The results obtained in this study show the effects of crack location and material property gradation profiles on stress intensity factors, energy release rate and T-stress.
Subject Keywords
Mechanical engineering.
URI
http://etd.lib.metu.edu.tr/upload/3/12610136/index.pdf
https://hdl.handle.net/11511/18042
Collections
Graduate School of Natural and Applied Sciences, Thesis