Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Selection and fusion of multiple stereo algorithms for accurate disparity segmentation
Download
index.pdf
Date
2008
Author
Bilgin, Arda
Metadata
Show full item record
Item Usage Stats
2
views
3
downloads
Fusion of multiple stereo algorithms is performed in order to obtain accurate disparity segmentation. Reliable disparity map of real-time stereo images is estimated and disparity segmentation is performed for object detection purpose. First, stereo algorithms which have high performance in real-time applications are chosen among the algorithms in the literature and three of them are implemented. Then, the results of these algorithms are fused to gain better performance in disparity estimation. In fusion process, if a pixel has the same disparity value in all algorithms, that disparity value is assigned to the pixel. Other pixels are labelled as unknown disparity. Then, unknown disparity values are estimated by a refinement procedure where neighbourhood disparity information is used. Finally, the resultant disparity map is segmented by using mean shift segmentation. The proposed method is tested in three different stereo data sets and several real stereo pairs. The experimental results indicate an improvement for the stereo analysis performance by the usage of fusion process and refinement procedure. Furthermore, disparity segmentation is realized successfully by using mean shift segmentation for detecting objects at different depth levels.
Subject Keywords
Electrical engineering.
,
Disparity segmentation.
URI
http://etd.lib.metu.edu.tr/upload/2/12610133/index.pdf
https://hdl.handle.net/11511/18048
Collections
Graduate School of Natural and Applied Sciences, Thesis