Production and characterization of boron nitride nanotubes

Download
2008
Özmen, Didem
The further developments in nanotechnology in last few years provide usage of nanoscale particles for many applications in various areas such as electronics, pharmaceutical, and biomedical due to their strengthened mechanical, thermal and electrical properties. Boron nitride nanotubes are a good example of nanoparticles. In this study, boron nitride nanotubes were successfully synthesized from the reaction of ammonia gas with mixture of boron and iron oxide. Physical and structural properties of the synthesized materials were determined by X-Ray Diffraction, Energy Dispersive X-Ray Spectroscopy, nitrogen sorption, X-Ray Photoelectron Spectroscopy, Fourier Transform Infrared Spectroscopy, and Scanning Electron Microscopy. Experiments were conducted in a tubular furnace at different temperatures and also at different weight ratios of boron to iron oxide. Qualitative chemical analysis of the reactor effluent stream was carried out using a mass spectrometer. The mass spectrometer analysis of the reaction products proved formation of nitrogen in addition to hydrogen and water during the reaction of ammonia gas with the mixture of boron and iron oxide. XRD results showed that hexagonal and rhombohedral boron nitrides and cubic iron were the solid phases formed in the product. FTIR and XPS results also indicated the presence of boron nitride and the atomic ratio of boron to nitrogen was compatible with the chemical stoichiometric relation between boron and nitrogen. It was observed that the crystanility of the product increased with an increase in temperature. The diameter of the produced nanotubes varied from 64 nm to 136 nm. The synthesized nanotubes exhibited Type II isotherms. The surface areas of the produced boron nitride nanotubes decreased with a decrease in both temperature and the weight ratio of boron to iron oxide. The best temperature and weight ratio of boron to iron oxide to produce boron nitride nanotubes were found to be 1300°C and 20, respectively.

Suggestions

Bor nitrür nanotüp üretimi
Özmen, Didem; Sezgi, Naime Aslı; Balcı, Suna(2010)
The further developments in nanotechnology in last few years provide usage of nanoscale particles for many applications in various areas such as electronics, pharmaceutical, and biomedical due to their strengthened mechanical, thermal and electrical properties. Boron nitride nanotubes are a good example of nanoparticles. In this study, boron nitride nanotubes were successfully synthesized from the reaction of ammonia gas with mixture of boron and iron oxide. Physical and structural properties of the synthes...
Adsorption properties of boron nitride nanotubes
Khan, Saeed Ahmad; Sezgi, Naime Aslı; Balcı, Fatma Suna; Department of Chemical Engineering (2016)
The developments in nanotechnology in last decades have provided use of nanoparticles for many applications in various areas such as electronics, fuel cells, composites, cosmetics, and biomedical. They have excellent mechanical, thermal, and electrical properties. Nanotechnology is one of the fastest growing areas in materials and engineering science and biotechnology. Nanotubes have been one of the most regarded and studied type of nanoparticles up to now. Boron nitride nanotubes (BNNTs) are an important m...
Immobilization of zeolite crystals on solid substrates for biosensor aplications
Öztürk, Seçkin; Akata Kurç, Burcu; Department of Micro and Nanotechnology (2010)
Electrochemical biosensors are cost effective, fast and portable devices, which can determine the existence and amounts of chemicals in a specific medium. These devices have many potential applications in many fields such as determination of diseases, process and product control, environmental monitoring, and drug research. To realize these potentials of the devices, many studies are being carried out to increase their sensitivity, selectivity and long term stabilities. Surface modification studies with var...
Structural vibration analysis of single walled carbon nanotubes with atom-vacancies
Doğan, İbrahim Onur; Yazıcıoğlu, Yiğit; Department of Mechanical Engineering (2010)
Recent investigations in nanotechnology show that carbon nanotubes (CNT) have one of the most significant mechanical, electrical and optical properties. Interactions between those areas like electrical, optical and mechanical properties are also very promising in both research and industrial fields. Those unique characteristics are built by mainly the atomistic structure of the carbon nanotubes. In this thesis, the effects of vacant atoms on single walled carbon nanotubes (SWCNT) are investigated using matr...
Prediction of hexagonal lattice parameters of stoichiometric and non-stoichiometric apatites by artificial neural networks
Koçkan, Ümit; Evis, Zafer; Department of Micro and Nanotechnology (2009)
Apatite group of minerals have been widely used in applications like detoxification of wastes, disposal of nuclear wastes and energy applications in addition to biomedical applications like bone repair, substitution, and coatings for metal implants due to its resemblance to the mineral part of the bone and teeth. X-ray diffraction patterns of bone are similar to mineral apatites such as hydroxyapatite and fluorapatite. Formation and physicochemical properties of apatites can be understood better by computer...
Citation Formats
D. Özmen, “Production and characterization of boron nitride nanotubes,” M.S. - Master of Science, Middle East Technical University, 2008.