Hide/Show Apps

A new feedback-based contention avoidance algorithm for optical burst switching networks

Toku, Hadi Alper
In this thesis, a feedback-based contention avoidance technique based on weighted Dijkstra algorithm is proposed to address the contention avoidance problem for Optical Burst Switching networks. Optical Burst Switching (OBS) has been proposed as a promising technique to support high-bandwidth, bursty data traffic in the next-generation optical Internet. Nevertheless, there are still some challenging issues that need to be solved to achieve an effective implementation of OBS. Contention problem occurs when two or more bursts are destined for the same wavelength. To solve this problem, various reactive contention resolution methods have been proposed in the literature. However, many of them are very vulnerable to network load and may suffer severe loss in case of heavy traffic. By proactively controlling the overall traffic, network is able to update itself in case of high congestion and by means of this method; contention avoidance can be achieved efficiently. The performance analysis of the proposed algorithm is presented through network simulation results provided by OMNET++ simulation environment. The simulation results show that the proposed contention avoidance technique significantly reduces the burst loss probability as compared to networks without any contention avoidance techniques.