A new feedback-based contention avoidance algorithm for optical burst switching networks

Download
2008
Toku, Hadi Alper
In this thesis, a feedback-based contention avoidance technique based on weighted Dijkstra algorithm is proposed to address the contention avoidance problem for Optical Burst Switching networks. Optical Burst Switching (OBS) has been proposed as a promising technique to support high-bandwidth, bursty data traffic in the next-generation optical Internet. Nevertheless, there are still some challenging issues that need to be solved to achieve an effective implementation of OBS. Contention problem occurs when two or more bursts are destined for the same wavelength. To solve this problem, various reactive contention resolution methods have been proposed in the literature. However, many of them are very vulnerable to network load and may suffer severe loss in case of heavy traffic. By proactively controlling the overall traffic, network is able to update itself in case of high congestion and by means of this method; contention avoidance can be achieved efficiently. The performance analysis of the proposed algorithm is presented through network simulation results provided by OMNET++ simulation environment. The simulation results show that the proposed contention avoidance technique significantly reduces the burst loss probability as compared to networks without any contention avoidance techniques.

Suggestions

Improvements to neural network based restoration in optical networks
Türk, Fethi; Bilgen, Semih; Department of Electrical and Electronics Engineering (2008)
Performance of neural network based restoration of optical networks is evaluated and a few possible improvements are proposed. Neural network based restoration is simulated with optical link capacities assigned by a new method. Two new improvement methods are developed to reduce the neural network size and the restoration time of severed optical connections. Cycle based restoration is suggested, which reduces the neural network structure by restoring the severed connections for each optical node, iterativel...
A fluid dynamics framework for control of mobile robot networks
Paç, Muhammed Raşid; Erkmen, Aydan Müşerref; Department of Electrical and Electronics Engineering (2007)
This thesis proposes a framework for controlling mobile robot networks based on a fluid dynamics paradigm. The approach is inspired by natural behaviors of fluids demonstrating desirable characteristics for collective robots. The underlying mathematical formalism is developed through establishing analogies between fluid bodies and multi-robot systems such that robots are modeled as fluid elements that constitute a fluid body. The governing equations of fluid dynamics are adapted to multi-robot systems and a...
A temporal neural network model for constructing connectionist expert system knowledge bases
Alpaslan, Ferda Nur (Elsevier BV, 1996-04-01)
This paper introduces a temporal feedforward neural network model that can be applied to a number of neural network application areas, including connectionist expert systems. The neural network model has a multi-layer structure, i.e. the number of layers is not limited. Also, the model has the flexibility of defining output nodes in any layer. This is especially important for connectionist expert system applications.
Improvements in DOA estimation by array interpolation in non-uniform linear arrays
Yaşar, Temel Kaya; Tuncer, Temel Engin; Department of Electrical and Electronics Engineering (2006)
In this thesis a new approach is proposed for non-uniform linear arrays (NLA) which employs conventional subspace methods to improve the direction of arrival (DOA) estimation performance. Uniform linear arrays (ULA) are composed of evenly spaced sensor elements located on a straight line. ULA's covariance matrix have a Vandermonde matrix structure, which is required by fast subspace DOA estimation algorithms. NLA differ from ULA only by some missing sensor elements. These missing elements cause some gaps in...
A new likelihood approach to autonomous multiple model estimation
Söken, Halil Ersin (Elsevier BV, 2020-04-01)
This paper presents an autonomous multiple model (AMM) estimation algorithm for hybrid systems with sudden changes in their parameters. Estimates of Kalman filters (KFs) that are tuned and employed for different system modes are merged based on a newly defined likelihood function without any necessity for filter interaction. The proposed likelihood function is composed of two measures, the filter agility measure and the steady-state error measure. These measures are derived based on filter adaptation rules....
Citation Formats
H. A. Toku, “A new feedback-based contention avoidance algorithm for optical burst switching networks,” M.S. - Master of Science, Middle East Technical University, 2008.