Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
One-warehouse multi-retailer problem under inventory control and transportation policies
Download
index.pdf
Date
2008
Author
Solyalı, Oğuz
Metadata
Show full item record
Item Usage Stats
241
views
94
downloads
Cite This
We consider a one-warehouse multi-retailer system where the warehouse orders or receives from its supplier and replenishes multiple retailers with direct shipping or multi-stop routing over a finite time horizon. The warehouse has the knowledge of external (deterministic) demands at the retailers and manages their inventories while ensuring no stock-out. We consider two problems with direct shipping policy and two problems with routing policy. For the direct shipping policy, the problem is to determine the optimal replenishments for the warehouse and retailers such that the system-wide costs are minimized. In one problem, the warehouse decides about how much and when to ship to the retailers while in the other problem, inventory level of the retailer has to be raised up to a predetermined level whenever replenished. We propose strong mixed integer programming formulations for these problems. Computational experiments show that our formulations are better than their competitors and are very successful in solving the problems to optimality. For the routing policy, the problem is to decide on when and in what sequence to visit the retailers and how much to ship to a retailer so as to minimize system-wide costs. In one problem, the warehouse receives given amounts from its supplier while in the other the warehouse decides on its own replenishments. We propose branch-and-cut algorithms and heuristics based on strong formulations for both problems. Computational results reveal that our procedures perform better than their competitors in the literature for both problems.
Subject Keywords
Industrial engineering.
,
Lot sizing.
,
Freight and freightage.
URI
http://etd.lib.metu.edu.tr/upload/3/12610239/index.pdf
https://hdl.handle.net/11511/18159
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
An integrated inventory control and vehicle routing problem
Solyalı, Oğuz; Süral, Haldun; Department of Industrial Engineering (2005)
In this study, we consider a logistics system, in which a single supplier delivers a product to multiple retailers over a finite time horizon. Supplier decides on the amount to order in each period and services retailers facing deterministic dynamic demand via a fleet of vehicles having limited capacity. Each retailer has specific minimum and maximum levels of inventory in an order-up-to level inventory policy setting. The problem is to simultaneously determine the quantity of product to order to the suppli...
The multiple retailer inventory routing problem with backorders
Alişan, Onur; Süral, Haldun; Department of Industrial Engineering (2008)
In this study we consider an inventory routing problem in which a supplier distributes a single product to multiple retailers in a finite planning horizon. Retailers should satisfy the deterministic and dynamic demands of end customers in the planning horizon, but the retailers can backorder the demands of end customers considering the supply chain costs. In each period the supplier decides the retailers to be visited, and the amount of products to be supplied to each retailer by a fleet of vehicles. The de...
Effective network formulations for lot sizing with backlogging in two-level serial supply chains
Solyali, Oguz; Denizel, Meltem; Süral, Haldun (2016-02-01)
This study considers the serial lot sizing problem with backlogging in two-level supply chains to determine when and how much to order at a warehouse and ship to a retailer over a T-period planning horizon so that the external known demand occurring at the retailer is satisfied and the total cost at all levels is minimized. In particular, the uncapacitated two-level serial lot sizing problem with backlogging and the two-level serial lot sizing problem with cargo capacity and backlogging are formulated using...
The one-warehouse multi-retailer problem: reformulation, classification, and computational results
Solyali, Oguz; Süral, Haldun (2012-07-01)
We consider the one-warehouse multi-retailer problem where a warehouse replenishes multiple retailers with deterministic dynamic demands over a horizon. The problem is to determine when and how much to order to the warehouse and retailers such that the total system-wide costs are minimized. We propose a new (combined transportation and shortest path based) integer programming reformulation for the problem in addition to the echelon stock and transportation based formulations in the literature. We analyze th...
The One-Warehouse Multiretailer Problem with an Order-Up-To Level Inventory Policy
Solyali, Oguz; Süral, Haldun; Denizel, Meltem (Wiley, 2010-10-01)
We consider a two-level system in which a warehouse manages the inventories of multiple retailers. Each retailer employs an order-up-to level inventory policy over T periods and faces an external demand which is dynamic and known. A retailer's inventory should be raised to its maximum limit when replenished. The problem is to jointly decide on replenishment times and quantities of warehouse and retailers so as to minimize the total costs in the system. Unlike the case in the single level lot-sizing problem,...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
O. Solyalı, “One-warehouse multi-retailer problem under inventory control and transportation policies,” Ph.D. - Doctoral Program, Middle East Technical University, 2008.