Hide/Show Apps

A case study in weather pattern searching using a spatial data warehouse model

Download
2008
Köylü, Çağlar
Data warehousing and Online Analytical Processing (OLAP) technology has been used to access, visualize and analyze multidimensional, aggregated, and summarized data. Large part of data contains spatial components. Thus, these spatial components convey valuable information and must be included in exploration and analysis phases of a spatial decision support system (SDSS). On the other hand, Geographic Information Systems (GISs) provide a wide range of tools to analyze spatial phenomena and therefore must be included in the analysis phases of a decision support system (DSS). In this regard, this study aims to search for answers to the problem how to design a spatially enabled data warehouse architecture in order to support spatio-temporal data analysis and exploration of multidimensional data. Consequently, in this study, the concepts of OLAP and GISs are synthesized in an integrated fashion to maximize the benefits generated from the strengths of both systems by building a spatial data warehouse model. In this context, a multidimensional spatio-temporal data model is proposed as a result of this synthesis. This model addresses the integration problem of spatial, non-spatial and temporal data and facilitates spatial data exploration and analysis. The model is evaluated by implementing a case study in weather pattern searching.