Application of semi conductor films over glass/ceramic surfaces and their low temperature photocatalytic activity

Ersöz, Tuğçe İrfan
Semiconductor metal oxides can be induced by light with proper wavelength resulting in oxidation and reduction reactions for the transformation of water and oxygen molecules into active radicals. With this method, it is possible to obtain self-cleaning surfaces and products having antimicrobial properties. The aim of this study is to develop semiconductor metal oxide thin films for multifunctional glass products and the characterization of photocatalytic self cleaning and antimicrobial properties. As semiconductor metal oxides; titanium dioxide (TiO2), tin oxide (SnO2) and their binary mixtures (TiO2-SnO2) are selected because of their abundancy, non toxic properties, stability and the ability of absorbing light close to visible range. Also the effect of metal dopants such as praseodymium (Pr), palladium (Pd), silver (Ag) and iron (Fe) was examined with these metal oxides. The colloidal solutions were synthesized by using sol-gel method in order to apply the developed method to industrial usage as applying on large surfaces. The glass substrates were coated with the colloidal solutions by dip coating and the dried samples were calcined under air flow. The best calcination condition for pure TiO2 coated thin film was determined as 400oC for 45 minutes. Surface characterization studies were performed by using UV-Visible Spectrophotometer for band gap measurement, CAM for contact angle measurement, SEM for surface morphology and tophology. The methylene blue adsorption tests were carried out and the effective surface area of the samples were predicted by the Langmuir adsorption isotherm of samples. The photocatalytic activities of the coated thin films were measured with the degradation of organic materials as red wine and methylene blue, and with the antimicrobial activity tests as counting the number of viable E.coli cells. 61.2% deactivation of methylene blue stain was achieved over SnO2 coated thin films while this was 22.1% over TiO2 coated thin films after irradiation for 180 minutes. The superior photocatalytic activity was observed with TiO2 samples doped with Pd and Ag ions. The TiO2-SnO2 coated samples performed limited photocatalytic activity which is less than the activity of SnO2 coated samples which was confirmed with surface area measurements as SnO2 coated samples had higher surface area (9.81 cm2/cm2) than TiO2-SnO2 coated samples. Surface area increased with increasing the amount of SnO2 and it was in the following order: SnO2 > 80% SnO2 + 20% TiO2 > 50% SnO2 + 50%TiO2 > 35% SnO2 + 65%TiO2 > 20% SnO2 + 80% TiO2 > TiO2.
Citation Formats
T. İ. Ersöz, “Application of semi conductor films over glass/ceramic surfaces and their low temperature photocatalytic activity,” M.S. - Master of Science, Middle East Technical University, 2009.