Use of helical wire core truss members in space structures

Download
2009
Işıldak, Murat
In an effort to achieve lighter and more economical space structures, a new patented steel composite member has been suggested and used in the construction of some steel roof structures. This special element has a sandwich construction composed of some strips of steel plates placed longitudinally along a helical wire core. The function of the helical core is to transfer the shear between the flange plates and increase the sectional inertia of the resulting composite member by keeping the flange plates at a desired distance from each other. Because of the lack of research, design engineers usually treat such elements as a solid member as if it has a full shear transfer between the flanges. However, a detailed analysis shows that this is not a valid assumption and leads to very unsafe results. In this context, the purpose of this study is to investigate the behavior of such members under axial compression and determine their effective sectional flexural rigidity by taking into account the shear deformations. This study applies an analytical investigation to a specific form of such elements with four flange plates placed symmetrically around a helical wire core. Five independent parameters of such a member are selected for this purpose. These are the spiral core and core wire diameters, the pitch of the spiral core, and the flange plate dimensions. Elements with varying combinations of the selected parameters are first analyzed in detail by finite element method, and some design charts are generated for the determination of the effective sectional properties to be used in the structural analysis and the buckling loads. For this purpose, an alternative closed-form approximate analytical solution is also suggested.

Suggestions

The effect of shape memory alloys on the ductility of exterior reinforced concrete beam-column joints using the damage plasticity model
Halahla, Abdulsamee M.; Abu Tahnat, Yazan B.; Almasri, Amin H.; Voyiadjis, George Z. (Elsevier BV, 2019-12-01)
Using shape memory alloys (SMA) bars can significantly enhance the ductility of exterior reinforced concrete joints, where they can replace the conventional steel reinforcement. This research focuses on studying the effect of using SMA on the ductility capacity of exterior reinforced concrete beam-column joints at different column axial load levels. Finite element analysis was carried out and compared with the experimental results from the literature for verification purposes, and both were compared with th...
Application of ring beam stiffness criterion for discretely supported shells under global shear and bending
Topkaya, Cem (SAGE Publications, 2018-12-01)
Silos in the form of a cylindrical metal shell are commonly elevated to provide access to the space beneath. In general, a few discrete column supports at evenly spaced intervals are commonly utilized. The presence of discrete supports results in circumferential non-uniformity in the axial compressive stress above the support. Depending on the size of the structure, several different support arrangements may be chosen. A stiff ring beam is utilized in larger silos to transfer and evenly distribute the discr...
Lateral buckling of overhanging crane trolley monorails
Ozdemir, Kerem Murat; Topkaya, Cem (Elsevier BV, 2006-07-01)
Lateral torsional buckling should be taken into account during the design of overhanging steel beams. One special type of overhanging beam is the crane trolley monorail. Lateral buckling of overhanging monorails under idealized loading and boundary conditions has been studied in the past using classical mathematical procedures. This paper aims to present a detailed investigation of overhanging monorails using finite element analysis. Effects of different loading and boundary conditions were studied in detai...
Improving seismic performance of deficient reinforced concrete columns using carbon fiber-reinforced polymers
ÖZCAN, OKAN; Binici, Barış; Ozcebe, Guney (Elsevier BV, 2008-06-01)
Reinforced concrete columns lacking transverse reinforcing steel do not possess necessary ductility to dissipate seismic energy during a major earthquake. The study reported herein investigates the use of carbon fiber-reinforced polymer (CFRP) wrapping as a method of retrofitting nonductile square reinforced concrete columns with low strength concrete and plain bars. Five specimens representative of transverse steel deficient flexure dominated columns in existing buildings were tested under lateral cyclic d...
Assessment of soil structure earthquake interaction induced soil liquefaction triggering
Unutmaz, Berna; Çetin, Kemal Önder; Department of Civil Engineering (2009)
Although there exist some consensus regarding seismic soil liquefaction assessment of free field soil sites, estimating the liquefaction triggering potential beneath building foundations still stays as a controversial and difficult issue. Assessing liquefaction triggering potential under building foundations requires the estimation of cyclic and static stress state of the soil medium. For the purpose of assessing the effects of the presence of a structure three-dimensional, finite difference-based total str...
Citation Formats
M. Işıldak, “Use of helical wire core truss members in space structures,” M.S. - Master of Science, Middle East Technical University, 2009.