Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Centralizers of finite subgroups in simple locally finite groups
Download
index.pdf
Date
2009
Author
Ersoy, Kıvanç
Metadata
Show full item record
Item Usage Stats
38
views
23
downloads
Cite This
A group G is called locally finite if every finitely generated subgroup of G is finite. In this thesis we study the centralizers of subgroups in simple locally finite groups. Hartley proved that in a linear simple locally finite group, the fixed point of every semisimple automorphism contains infinitely many elements of distinct prime orders. In the first part of this thesis, centralizers of finite abelian subgroups of linear simple locally finite groups are studied and the following result is proved: If G is a linear simple locally finite group and A is a finite d-abelian subgroup consisting of semisimple elements of G, then C_G(A) has an infinite abelian subgroup isomorphic to the direct product of cyclic groups of order p_i for infinitely many distinct primes pi. Hartley asked the following question: Let G be a non-linear simple locally finite group and F be any subgroup of G. Is CG(F) necessarily infinite? In the second part of this thesis, the following problem is studied: Determine the nonlinear simple locally finite groups G and their finite subgroups F such that C_G(F) contains an infinite abelian subgroup which is isomorphic to the direct product of cyclic groups of order pi for infinitely many distinct primes p_i. We prove the following: Let G be a non-linear simple locally finite group with a split Kegel cover K and F be any finite subgroup consisting of K-semisimple elements of G. Then the centralizer C_G(F) contains an infinite abelian subgroup isomorphic to the direct product of cyclic groups of order p_i for infinitely many distinct primes p_i.
Subject Keywords
Mathematics.
,
Algebra.
URI
http://etd.lib.metu.edu.tr/upload/3/12610850/index.pdf
https://hdl.handle.net/11511/18991
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Centralizers of Finite p-Subgroups in Simple Locally Finite Groups
Kuzucuoğlu, Mahmut (Siberian Federal University, 2017-01-01)
We are interested in the following questions of B. Hartley: (1) Is it true that, in an infinite, simple locally finite group, if the centralizer of a finite subgroup is linear, then G is linear? (2) For a finite subgroup F of a non-linear simple locally finite group is the order vertical bar CG(F)vertical bar infinite? We prove the following: Let G be a non-linear simple locally finite group which has a Kegel sequence K = {(G(i), 1) : i is an element of N} consisting of finite simple subgroups. Let p be a f...
Invariant subspaces for Banach space operators with an annular spectral set
Yavuz, Onur (2008-01-01)
Consider an annulus Omega = {z epsilon C : r(0) 0 such that parallel to p(T)parallel to <= K sup{vertical bar p(lambda)vertical bar : vertical bar lambda vertical bar <= 1} and parallel to p(r(0)T(-1))parallel to <= K sup{vertical bar p(lambda)vertical bar : vertical bar lambda vertical bar <= 1} for all polynomials p. Then there exists a nontrivial common invariant subspace for T* and T*(-1).
Betti numbers of fixed point sets and multiplicities of indecomposable summands
Öztürk, Semra (Cambridge University Press (CUP), 2003-04-01)
Let G be a finite group of even order, k be a field of characteristic 2, and M be a finitely generated kG-module. If M is realized by a compact G-Moore space X, then the Betti numbers of the fixed point set X-Cn and the multiplicities of indecomposable summands of M considered as a kC(n)-module are related via a localization theorem in equivariant cohomology, where C-n is a cyclic subgroup of G of order n. Explicit formulas are given for n = 2 and n = 4.
Centralizers of subgroups in simple locally finite groups
ERSOY, KIVANÇ; Kuzucuoğlu, Mahmut (2012-01-01)
Hartley asked the following question: Is the centralizer of every finite subgroup in a simple non-linear locally finite group infinite? We answer a stronger version of this question for finite K-semisimple subgroups. Namely let G be a non-linear simple locally finite group which has a Kegel sequence K = {(G(i), 1) : i is an element of N} consisting of finite simple subgroups. Then for any finite subgroup F consisting of K-semisimple elements in G, the centralizer C-G(F) has an infinite abelian subgroup A is...
Chirality of real non-singular cubic fourfolds and their pure deformation classification
Finashin, Sergey (Springer Science and Business Media LLC, 2020-02-22)
In our previous works we have classified real non-singular cubic hypersurfaces in the 5-dimensional projective space up to equivalence that includes both real projective transformations and continuous variations of coefficients preserving the hypersurface non-singular. Here, we perform a finer classification giving a full answer to the chirality problem: which of real non-singular cubic hypersurfaces can not be continuously deformed to their mirror reflection.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
K. Ersoy, “Centralizers of finite subgroups in simple locally finite groups,” Ph.D. - Doctoral Program, Middle East Technical University, 2009.