Synthesis and characterization of semiconductor thin films for photovoltaic applications

Download
2009
Tezel, Tamer
Cadmium sulfide (CdS) thin films are very attractive materials due to their tunable optical properties and potential applications in not only photovoltaic devices but also in electronics, bio-labeling and fluorescence imaging. Recently, there is a great interest in flexible photovoltaic devices due to their unique properties such as very low weight, mechanical durability and large area applications. Organic semiconductors and their heterojunctions with inorganic materials are the most promising candidates for flexible photovoltaic applications. Preparation of CdS and Polypyrrole (PPy) semiconducting thin films on flexible polyethyleneterephtalate (PET) substrates and investigation of their morphological, structural, optical and electrical properties are the main scopes of this thesis. In the first part of the study, CdS thin films were deposited on PET via electrodeposition method. Taking the advantages of electrodeposition methods, CdS thin films with good optical and electrical properties were produced. CdS thin films were also deposited on soda-lime glass substrates in order to observe substrate effect. Scanning electron microscopy equipped with energy dispersive X-ray (SEM-EDX), X-ray diffraction (XRD) and UV-vis spectrometry have been used to determine the structural and optical properties of the films deposited at various temperatures and for different deposition time intervals. For all samples, molecularly homogenous CdS films have been observed with atomic percent ratios of the Cd to S very close to 1:1. Thin films showed (002) hexagonal crystal structure around 26 (2) with average grain size 7.0 nm. CdS films have high transmittance for the wavelength greater than 500nm. Band gap energies of the films, which range between 2.74 and 2.68 eV, decreased with increasing both deposition temperature and time. For further characterization, photoelectrochemical performances and electrochemical impedance spectroscopy (EIS) of both as deposited and CuCl2 treated CdS thin films have been investigated. Later, following to the deposition of individual CdS thin films, polypyrrole thin films were produced and then heterojunctions of polypyrrole with CdS were examined. It has been observed that cadmium sulfide enhanced the photoelectrochemical properties of the polypyrrole film. Influence of the polypyrrole thin film deposition time on the photoelectrochemical properties has been also investigated in this study. Frequency dependent measurements revealed that type of charge carrier changes as a function of polypyrrole deposition time.

Suggestions

Flexible organic photovoltaics from zinc oxide nanowires grown on transparent and conducting single walled carbon nanotube thin films
Ünalan, Hüsnü Emrah; Kuo, Daniel; Parekh, Bhavin; Amaratunga, Gehan; Chhowalla, Manish (Royal Society of Chemistry (RSC), 2008-01-01)
The fabrication of flexible organic photovoltaics (OPVs) which utilize transparent and conducting single walled carbon nanotube (SWNT) thin films as current collecting electrodes on plastic substrates in zinc oxide nanowire (ZnO NW)/poly(3-hexylthiophene) (P3HT) bulk heterojunction photovoltaic devices is reported. The bulk heterojunctions for exciton dissociation are created by directly growing ZnO nanowires from solution on the SWNT electrodes and spin coating the P3HT polymer. A maximum OPV power convers...
Electrochromic and photovoltaic applications of benzotriazole bearing donor acceptor type conjugated polymers
Baran, Derya; Toppare, Levent Kamil; Department of Chemistry (2010)
Organic semi-conductors are of great interest since these compounds can be utilized as active layers in many device applications such as ECDs, LEDs and solar cells. Incorporating the benzotriazole units into the polymer backbone enhances the optical properties of donor units. Hexyl thiophene and pyrrole are commonly used as electron donor materials. Benzotriazole can be coupled to hexyl thiophene or pyrrole to yield materials which can be polymerized to give donor acceptor type polymers. These materials are...
Preparation and characterization of magnetic nanoparticles
Küçük, Burcu; Volkan, Mürvet; Department of Chemistry (2009)
Magnetite (Fe3O4) and Maghemite (γ-Fe2O3) are well-known iron oxide phases among magnetic nanoparticles due to their magnetic properties, chemical stability, and nontoxicity. They have gained acceptance in several fields of application of nanomaterials such as magnetic recording systems, magnetic refrigeration, magneto-optical devices, magnetic resonance imaging, magnetic separation techniques and separation and purification of biological molecules. Recently, there is a growing interest in the synthesis of ...
A new NIR absorbing DPP-based polymer for thick organic solar cells
Oklem, Gulce; Song, Xin; Toppare, Levent Kamil; Baran, Derya; Günbaş, Emrullah Görkem (Royal Society of Chemistry (RSC), 2018-03-28)
Sunlight covers a broad spectrum from ultra-violet to infrared, and low band gap materials are required to utilize the near infrared region (NIR) for better photon harvesting in organic solar cells. It has been shown that copolymers comprising diketopyrrolopyrrole-based acceptors and simple donors (thiophene or furan) achieve an absorption maximum at around 800 nm. In this study, selenophene was coupled with a diketopyrrolopyrrole based acceptor to yield a polymer (PFDPPSe) with an absorption maximum at 830...
Application of Ionic Liquids in Pot-in-Pot Reactions
Çınar, Simge; Oyola-Reynoso, Stephanie; BWAMBOK, David K.; GATHIAKA, Symon M.; Thuo, Martin (MDPI AG, 2016-03-01)
Pot-in-pot reactions are designed such that two reaction media (solvents, catalysts and reagents) are isolated from each other by a polymeric membrane similar to matryoshka dolls (Russian nesting dolls). The first reaction is allowed to progress to completion before triggering the second reaction in which all necessary solvents, reactants, or catalysts are placed except for the starting reagent for the target reaction. With the appropriate trigger, in most cases unidirectional flux, the product of the first...
Citation Formats
T. Tezel, “Synthesis and characterization of semiconductor thin films for photovoltaic applications,” M.S. - Master of Science, Middle East Technical University, 2009.