Fuzzy unequal clustering in wireless sensor networks

Bağcı, Hakan
In order to gather information more efficiently, wireless sensor networks are partitioned into clusters. The most of the proposed clustering algorithms do not consider the location of the base station. This situation causes hot spots problem in multi-hop wireless sensor networks. Unequal clustering mechanisms, which are designed by considering the base station location, solve this problem. In this thesis, we propose a fuzzy unequal clustering algorithm (EAUCF) which aims to prolong the lifetime of wireless sensor networks. EAUCF adjusts the cluster-head radius considering the residual energy and the distance to the base station parameters of the sensor nodes. This helps decreasing the intra-cluster work of the sensor nodes which are closer to the base station or have lower battery level. We utilize fuzzy logic for handling the uncertainties in cluster-head radius estimation. We compare our algorithm with some popular algorithms in literature, namely LEACH, CHEF and EEUC, according to First Node Dies (FND), Half of the Nodes Alive (HNA) and energy-efficiency metrics. Our simulation results show that EAUCF performs better than other algorithms in most of the cases considering FND, HNA and energy-efficiency. Therefore, our proposed algorithm is a stable and energy-efficient clustering algorithm.


Query based energy efficient clustering methods for wireless sensor networks
Koşar, Onur; Koçyiğit, Altan; Department of Information Systems (2011)
In Wireless Sensor Networks, designing a low overhead routing protocol is crucial for prolonging network lifetime. Wireless sensor nodes depend on limited batteries and if they run out of battery, they cannot contribute to the sensing. There are lots of studies aimed at prolonging network lifetime. One of the methods to extend life time of the wireless sensor networks is clustering. In clustering approaches main aim is to prevent unnecessary messaging and decrease number of messages exchanged by aggregating...
Analysis and modeling of routing and security problems in wireless sensor networks with mathematical programming
İncebacak, Davut; Baykal, Nazife; Bıçakcı, Kemal; Department of Information Systems (2013)
Wireless Sensor Networks (WSNs) are composed of battery powered small sensor nodes with limited processing, memory and energy resources. Self organization property together with infrastructureless characteristics of WSNs make them favorable solutions for many applications. Algorithms and protocols developed for WSNs must consider the characteristics and constraints of WSNs but since battery replenishment is not possible or highly challenging for sensor nodes, one of the major concerns in designing network p...
Life time sensitive weighted clustering on wireless sensor networks
Alizadeh Jarchlo, Elnaz; Bazlamaçcı, Cüneyt Fehmi; Department of Information Systems (2013)
Wireless Sensor Networks typically include wireless sensor nodes with limited energy. Network lifetime and scalability are considered as two significant requirements for sensor network applications. In order to decrease energy consumption and increase network lifetime one can apply an efficient clustering method. The application of the clustering method proposed in this thesis (LTS-WCA) leads to reducing the energy cost and the transmission distance of each node by grouping the nodes in several clusters and...
Rule-based in-network processing for event-driven applications in wireless sensor networks
Şanlı, Özgür; Yazıcı, Adnan; Körpeoğlu, İbrahim; Department of Computer Engineering (2011)
Wireless sensor networks are application-specific networks that necessitate the development of specific network and information processing architectures that can meet the requirements of the applications involved. The most important challenge related to wireless sensor networks is the limited energy and computational resources of the battery powered sensor nodes. Although the central processing of information produces the most accurate results, it is not an energy-efficient method because it requires a cont...
Security and quality of service for wireless sensor networks
Tomur, Emrah; Bilgen, Semih; Department of Information Systems (2008)
Security and quality of service (QoS) issues in cluster-based wireless sensor networks are investigated. The QoS perspective is mostly at application level consisting of four attributes, which are spatial resolution, coverage, system lifetime and packet loss due to collisions. The addressed security aspects are message integrity and authentication. Under this scope, the interactions between security and service quality are analyzed with particular emphasis on the tradeoff between security and spatial resolu...
Citation Formats
H. Bağcı, “Fuzzy unequal clustering in wireless sensor networks,” M.S. - Master of Science, Middle East Technical University, 2010.