Hide/Show Apps

An extensible framework for automated network attack signature generation

Kenar, Serkan
The effectiveness of misuse-based intrusion detection systems (IDS) are seriously broken, with the advance of threats in terms of speed and scale. Today worms, trojans, viruses and other threats can spread all around the globe in less than thirty minutes. In order to detect these emerging threats, signatures must be generated automatically and distributed to intrusion detection systems rapidly. There are studies on automatically generating signatures for worms and attacks. However, either these systems rely on Honeypots which are supposed to receive only suspicious traffic, or use port-scanning outlier detectors. In this study, an open, extensible system based on an network IDS is proposed to identify suspicious traffic using anomaly detection methods, and to automatically generate signatures of attacks out of this suspicious traffic. The generated signatures are classified and fedback into the IDS either locally or distributed. Design and proof-of-concept implementation are described and developed system is tested on both synthetic and real network data. The system is designed as a framework to test different methods and evaluate the outcomes of varying configurations easily. The test results show that, with a properly defined attack detection algorithm, attack signatures could be generated with high accuracy and efficiency. The resulting system could be used to prevent early damages of fast-spreading worms and other threats.