Hide/Show Apps

Investigating the CO2 emission of Turkish electricity sector and its mitigation potential

Arı, İzzet
The rapid industrialization, population growth, urbanization and economic and social development cause many environmental problems, such as climate change which is the result of the increase in the emission of greenhouse gases (GHGs) especially CO2. Combustion of fossil fuels, particularly from electricity generation, has the major responsibility for CO2 emissions. Decreasing the amount of CO2 emission requires a significant shift from our present energy use pattern toward one of lesser reliance on fossil fuels. Using renewable energy sources is one of the ways to supply some of the electricity demand reducing the associated GHG emissions and thus decreasing the adverse effects of climate change. In this study, generated electricity associated CO2 emissions and the specific CO2 emission factors are calculated based on IPCC methodology for each fuel type and each thermal power plant for Turkey between 2001 and 2008. The electricity demand of Turkey is estimated to increase about 7% annually till to 2019. Based on the planned power plant data obtained from EMRA, it was found that the total electricity supply (planned + existing) will not be sufficient to provide the estimated demand between 2011 and 2019. To overcome supply deficiency problem, four different scenarios are developed and the mitigation potential of CO2 emission from electricity generation based on these scenarios are examined. The results from these scenarios show that there is a significant decrease in the amount of CO2 emission from electricity generation. Renewable Energy Scenario which is the best scenario in terms of mitigation of CO2 emissions, provides to mitigation of 192 millions of CO2 emissions between 2009 and 2019. with respect to BAU scenario