Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Numerical modeling and performance analysis of solar-powered ideal adsorption cooling systems
Download
index.pdf
Date
2010
Author
Taylan, Onur
Metadata
Show full item record
Item Usage Stats
254
views
119
downloads
Cite This
Energy consumption is continuously increasing around the world and this situation yields research to find sustainable energy solutions. Demand for cooling is one of the reasons of increasing energy demand. This research is focused on one of the sustainable ways to decrease energy demand for cooling which is the solar-powered adsorption cooling system. In this study, general theoretical performance trends of a solar-powered adsorption cooling system are investigated using TRNSYS and MATLAB. Effects of different cycle enhancements, working pairs, operating and design conditions on the performance are analyzed through a series of steady and seasonal-transient simulations. Additionally, a normalized model is presented to investigate the effects of size of the system, need for backup power, collector area and mass of adsorbent. Results are presented in terms of values and ratios of cooling capacity weighted COP. For the conditions explored, the thermal wave cycle, wet cooling towers, high evaporation temperatures and evacuated tube collectors produced the highest COP values. Moreover, the heat capacity of the adsorbent bed and its shell should be low for the simple and heat recovery cycles and the adsorbent bed should be cooled down to the condensation temperature for all cases to achieve the highest possible COP. The selection of working pair should depend on the temperature of the available heat source (solar energy in this study) since each working pair has a distinct operating temperature range. Furthermore, there is always a need for backup power for the analyzed location and the system.
Subject Keywords
Mechanical engineering.
,
Adsorption.
URI
http://etd.lib.metu.edu.tr/upload/12611799/index.pdf
https://hdl.handle.net/11511/19505
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Estimation the adsorption capacity of mining waste -Leonarite- for treatment
Kurt, Zöhre (2020-11-01)
As the limited resources are shrinking, there has been a demand to obtain solutions for potable water as well as creative solutions to treat it. One material that has not been explored is a waste product of coal mining- leonardite. Leonardite is highly produced in Turkey and has been exported to all over the world to be used in agriculture. The reasons why leonardite is working miracles in the agriculture has not been revealed but it contains humic acid and is a agriculture additive. It has a potential to a...
INVESTIGATION AND MODIFICATION OF HYDROKINETIC SAVONIUS TURBINE FOR LOW WATER SPEEDS
Ike-Offiah , Chiedozie Augustine; Orang, Ali Atashbar; Oğuz, Elif; Sustainable Environment and Energy Systems (2022-11)
With the ever-growing global interest in reducing greenhouse gases such as CO2, renewable energy options present a good energy alternative. Not only are they a sustainable option in their operational period, but they also have a low implementation cost especially, when compared to conventional fossil fuel sources. Hydrokinetic turbines have the advantages of energy predictability, relatively low visual impact, a high energy density, high capacity factor, and ease of manufacture, in addition to the low cost ...
Analytical Modelling, Simulation and Comparative Study of Multi-Junction Solar Cells Efficiency
Hadjdida, Abdelkader; Bourahla, Mohamed; Ertan, Hulusi Bülent; Bekhti, Mohamed (2018-12-01)
Currently, solar energy is promising the primary source of renewable energy that has a great potential to generate power for an extremely low operating cost when compared to already existing power generation technologies. Increasing the efficiency of solar cells is a major goal and the prominent factor in photovoltaic system research. Current triple junction solar cells reach 30% and the next generation will bring 35% in 5 years to peak at 40%. These cells are used in space environment and in terrestrial sy...
Simulation of geothermal reservoirs with high amount of carbon dioxide
Küçük, Serhat; Akın, Serhat; Department of Petroleum and Natural Gas Engineering (2018)
Geothermal energy is always attributed as a sustainable and environmentally friendly source of energy. But in some cases, amount of the greenhouse gas emissions from geothermal fields become a big issue. Kızıldere Geothermal Field, one of the most important and large scale geothermal fields of the world, is a subject of these issues, experiencing excess amount of CO2 production rates and a rapid decline in the reservoir pressures. This study aims to construct a numerical model of the Kızıldere Geothermal Fi...
Optimum daily operation of a wind-hydro hybrid system
Ercan, Eray; Kentel Erdoğan, Elçin (2022-06-01)
© 2022 Elsevier LtdDue to the negative effects of fossil fuels on the environment and health, energy supply is shifting towards renewables. The integration of renewable energy systems is challenging due to the intermittent nature of renewables, however this can be mitigated through storage. Uncertainty in electricity prices in spot markets further complicates the operation of these systems. Pumped storage hydropower is currently the most viable form of large-scale energy storage, and operation of renewable ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
O. Taylan, “Numerical modeling and performance analysis of solar-powered ideal adsorption cooling systems,” M.S. - Master of Science, Middle East Technical University, 2010.