Investigation of dc generated plasmas using terahertz time domain spectroscopy

Download
2010
Karaoğlan, Gülten
This thesis is on the topic of investigation of the characteristics of DC Glow Discharge plasmas. Emphasis is given on characterizing the plasma electron density. The methods of generating and detecting THz pulses are described. THz transmission spectroscopy and plasma emission spectroscopy is examined. Transmission spectrum is taken for Air, gaseous Nitrogen and Argon plasmas. Moreover, emission spectrum of Air, N2 and Ar plasma analysis were done respectively. It was found that the transmission of terahertz pulses through nitrogen plasma was considerably affected compared to that of the argon plasma. Initially Drude model theory of electron conduction is employed to analyze the plasma density.

Suggestions

Numerical investigation of a dc glow discharge in an argon gas: two-component plasma model
Kemaneci, Efe Hasan; Rafatov, İsmail; Department of Physics (2009)
This thesis deals with a one and two dimensional numerical modeling of a low-pressure DC glow discharge in argon gas. We develop two-component fluid model which uses the diffusion-drift theory for the gas discharge plasma and consists of continuity equations for electrons and ions, as well as Poisson equation for electric field. Numerical method is based on the control volume technique. Calculations are carried out in MATLAB environment. Computed results are compared with the classic theory of glow discharg...
Observed nonlinearities in a DC semiconductor-gas discharge system
ÇAYLI, YAVUZ KERİM; MANSUROĞLU, DOĞAN; Uzun Kaymak, İlker Ümit (Canadian Science Publishing, 2018-07-01)
Nonlinear behaviour of a direct current (DC) driven semiconductor-gas discharge plasma is investigated experimentally. The setup consists of two planar electrodes separated by a gap of 1 mm. Plasma glow is generated between a semiconductor cathode and a transparent anode using nitrogen gas at partial atmospheric pressure. Nonlinear behavior of the discharge is investigated by varying the applied DC voltage while monitoring the plasma current (I), voltage (V), and the optical emission, (i.e., amplified volta...
Calculation of the Dielectric Constant of a Ferroelectric Liquid Crystal From a Mean Field Model
YURTSEVEN, HASAN HAMİT; Yurtseven, Hasan Hamit (2011-01-01)
The static dielectric constant epsilon(perpendicular to) of the ferroelectric liquid crystal 4-(3-methyl-2-chlorobutanoyloxy)-4'--heptyloxybiphenyl (A7) with high spontaneous polarization is calculated as a function of temperature using a mean field model. This calculation is performed close to the smectic A-isotropic liquid (SmA-I) transition for pure optically active compound (T-c = 81.6 degrees C). For this calculation of epsilon(perpendicular to), the free energy of the SmA phase is expanded in terms of...
Production of hydrogenated nanocrystalline silicon based thin film transistor
Aliyeva, Tamila; Atılgan, İsmail; Department of Physics (2010)
The instability under bias voltage stress and low mobility of hydrogenated amorphous silicon (a-Si:H) thin film transistor (TFT), produced by plasma enhanced chemical vapor deposition (PECVD) technique, are the main problems impeding the implementation of active matrix arrays for light emitting diode display panels and their peripheral circuitry. Replacing a-Si:H by hydrogenated nanocrystalline silicon film (nc-Si:H) seems a solution due to its higher mobility and better stability. Therefore nc-Si:H TFT was...
Characterization of Air-Nitrogen-Argon DC Glow Discharge Plasma with THz Time Domain Spectroscopy
Karaoğlan, Gülten; Tosun, Zahide; Demiral, Akbar; Altan, Hakan (Springer, Dordrecht, 2011-01-01)
Transmission of terahertz pulses through DC glow discharge plasma was investigated for different gases. The pressure was kept in between the range of 0.1 torr–0.5 torr and for each pressure different measurements were taken at 5 mA, 10 mA and 15 mA plasma currents. Moreover, emission spectrum of Air, N2 and Ar plasma analysis were done respectively. It was found that the transmission of terahertz pulses through nitrogen plasma was considerably affected compared to that of the argon plasma.
Citation Formats
G. Karaoğlan, “Investigation of dc generated plasmas using terahertz time domain spectroscopy,” M.S. - Master of Science, Middle East Technical University, 2010.