Synthesis and characterization of titanosilicate ets-10 for potential photovoltaic applications

Galioğlu, Sezin
Different kinds of nanoparticles are widely used in optoelectronic and photovoltaic applications to harvest light to increase efficiency of devices. ETS-10, which is a synthetic microporous material consisting of –Ti-O-Ti-O-Ti- wires that run in the crystal in a and b directions, has been of interest in such applications due to its unique properties. In the current study, the synthesis conditions of ETS-10 were investigated in order to obtain pure ETS-10 crystals with the desired morphology. For this purpose, ETS-10 crystals were synthesized using different molar compositions. The effects of several synthesis parameters on the obtained products were investigated. Furthermore, ETS-10 thin films were prepared on ITO glass substrates using secondary growth of ETS-10 for the first time. The orientation of the -Ti-O-Ti-O-Ti- wires inside ETS-10 were explored by preparing several ETS-10 films on the ITO glass substrates using secondary growth of ETS-10 multilayers with a partial a(b)-out-of-plane preferred crystal orientation. This orientation can be desirable for the advanced applications of ETS-10 films. Afterwards, silver nanoparticle modified ETS-10 crystals were prepared and characterized in detail to understand the interaction of silver nanoparticles with the synthesized ETS-10 crystals. For this purpose, ETS-10 in the as-prepared and silver nanoparticle containing forms have been characterized using, XRD, ICP-OES, SEM, HR-TEM, N2 Adsorption, XPS, and UV/VIS spectroscopy. In order to investigate the optical properties of the silver modified ETS-10, transmittance-reflectance measurements were carried out. In general, it is believed that all steps necessary for the preparation of ETS-10 films and preliminary steps for investigating ETS-10 for future photovoltaic applications were determined.


Synthesis, electrochemical characterization and organic solar cell applications of selenophene containing conjugated polymers
Yaşa, Mustafa; Toppare, Levent Kamil; Department of Polymer Science and Technology (2017)
Donor-Acceptor (D-A) type conjugated polymers are very popular for potential applications such as organic light emitting diodes, solar cells, electrochromic devices and organic field effect transistors. In literature, cyclopentadithiophene and its derivatives are commonly used electron donor units for organic solar cells. The incorporation of selenium atom into polymer backbone results in low band gap polymers as compared to sulfur and oxygen counterparts. In this study, selenophene containing conjugated po...
Immobilization of zeolite crystals on solid substrates for biosensor aplications
Öztürk, Seçkin; Akata Kurç, Burcu; Department of Micro and Nanotechnology (2010)
Electrochemical biosensors are cost effective, fast and portable devices, which can determine the existence and amounts of chemicals in a specific medium. These devices have many potential applications in many fields such as determination of diseases, process and product control, environmental monitoring, and drug research. To realize these potentials of the devices, many studies are being carried out to increase their sensitivity, selectivity and long term stabilities. Surface modification studies with var...
Design, syntheses and structure-property relationships of benzazole and isoindigo comprising conducting polymers/
Göker, Seza; Toppare, Levent Kamil; Department of Chemistry (2019)
Donor–acceptor (D–A) conjugated polymers have been widely used for potential applications such as organic light emitting diodes, solar cells, electrochromic devices and organic field effect transistors. Benzazole comprising conducting polymers are popular for the last few decades since they can be used as low-band-gap donor materials because of their strong intramolecular charge transfer characteristics and excellent photovoltaic performances. Strong electron-donating and withdrawing building blocks are nec...
Synthesis of benzotriazole bearing donor acceptor type electroactive monomers towards high optical contrast and fast switching electrochromic materials
Balan, Abidin; Toppare, Levent Kamil; Department of Chemistry (2009)
Synthesis of new electroactive monomers are highly desired since these compounds can be utilized as active layers in many device applications such as ECDs, LEDs and solar cells. EDOT (3,4 ethylenedioxythiophene) and thiophene bearing polymers were also proven to be excellent candidates as electrochromic materials. Benzotriazole can be coupled to EDOT and thiophene to yield materials that can be polymerized to give donor acceptor type polymers. These materials are promising candidates as components in fast s...
Theoretical and thermal characterization of a wideband perfect absorber for application in solar cells
Rufangura, Patrick; Sabah, Cumali (2016-12-01)
This paper suggests a metamaterial (MTM) absorber structure to be used for efficiency improved solar cell. The proposed MTM absorber consists of the topmost three concentric circular ring resonators, and a ground metal plane sandwiched to the top layer with a dielectric spacer. Numerical simulation and theoretical (interference theory) studies on the proposed design show a wideband with near-perfect (>99%) absorption response in the visible frequency region of the solar spectrum. Thermal characterization of...
Citation Formats
S. Galioğlu, “Synthesis and characterization of titanosilicate ets-10 for potential photovoltaic applications,” M.S. - Master of Science, Middle East Technical University, 2010.