A singular value decomposition approach for recommendation systems

Download
2010
Osmanlı, Osman Nuri
Data analysis has become a very important area for both companies and researchers as a consequence of the technological developments in recent years. Companies are trying to increase their profit by analyzing the existing data about their customers and making decisions for the future according to the results of these analyses. Parallel to the need of companies, researchers are investigating different methodologies to analyze data more accurately with high performance. Recommender systems are one of the most popular and widespread data analysis tools. A recommender system applies knowledge discovery techniques to the existing data and makes personalized product recommendations during live customer interaction. However, the huge growth of customers and products especially on the internet, poses some challenges for recommender systems, producing high quality recommendations and performing millions of recommendations per second. In order to improve the performance of recommender systems, researchers have proposed many different methods. Singular Value Decomposition (SVD) technique based on dimension reduction is one of these methods which produces high quality recommendations, but has to undergo very expensive matrix calculations. In this thesis, we propose and experimentally validate some contributions to SVD technique which are based on the user and the item categorization. Besides, we adopt tags to classical 2D (User-Item) SVD technique and report the results of experiments. Results are promising to make more accurate and scalable recommender systems.

Suggestions

Using tag similarity in SVD-based recommendation systems
Osmanli, Osman Nuri; Toroslu, İsmail Hakkı (2011-12-01)
Data analysis has become a very important area for both companies and researchers as a consequence of the technological developments in recent years. Companies are trying to increase their profit by analyzing the existing data about their customers and making decisions for the future according to the results of these analyses. Parallel to the need of companies, researchers are investigating different methodologies to analyze data more accurately with high performance. In this paper, we adopted free-formatte...
A web service based trust and reputation system for transitory collaboration formation in supply chains
Taşyurt, İbrahim; Doğaç, Asuman; Department of Computer Engineering (2009)
Today, advancements in the information technologies increased the significance of electronic business in the world. Besides the numerous advantages provided by these advancements, competition has also increased for the enterprises. In this competitive environment, companies have to access information faster and response to the changes quickly. In a supply chain, it is a highly possible that one of the partners may defect in providing its services. When these exceptional cases occur, the pending parties have...
Soft decoding of convolutional product codes on an FPGA platform
Sanlı, Mustafa; Yılmaz, Ali Özgür; Department of Electrical and Electronics Engineering (2005)
In today̕s world, high speed and accurate data transmission and storage is necessary in many fields of technology. The noise in the transmission channels and read-write errors occurring in the data storage devices cause data loss or slower data transmission. To solve these problems, the error rate of the received information must be minimized. Error correcting codes are used for detecting and correcting the errors. Turbo coding is an efficient error correction method which is commonly used in various commun...
A content boosted collaborative filtering approach for movie recommendation based on local & global similarity and missing data prediction
Özbal, Gözde; Alpaslan, Ferda Nur; Department of Computer Engineering (2009)
Recently, it has become more and more difficult for the existing web based systems to locate or retrieve any kind of relevant information, due to the rapid growth of the World Wide Web (WWW) in terms of the information space and the amount of the users in that space. However, in today's world, many systems and approaches make it possible for the users to be guided by the recommendations that they provide about new items such as articles, news, books, music, and movies. However, a lot of traditional recommen...
Improved probabilistic matrix factorization model for sparse datasets /
Ar, Yılmaz; Taşkaya Temizel, Tuğba; Department of Information Systems (2014)
The amount of information on the World Wide Web has increased significantly owing to advancing web and information technologies. This has made it difficult for users to obtain relevant and useful information thus there is a need for information filtering. Recommender Systems (RS) have emerged as a technique to overcome the problem. Collaborative Filtering (CF) that is one of the widely used RS approaches aims to predict users’ preference concerning an item. The main idea behind CF is the users who agreed in...
Citation Formats
O. N. Osmanlı, “A singular value decomposition approach for recommendation systems,” M.S. - Master of Science, Middle East Technical University, 2010.