Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Smoothing and differentiation of dynamic data
Download
index.pdf
Date
2010
Author
Titrek, Fatih
Metadata
Show full item record
Item Usage Stats
257
views
117
downloads
Cite This
Smoothing is an important part of the pre-processing step in Signal Processing. A signal, which is purified from noise as much as possible, is necessary to achieve our aim. There are many smoothing algorithms which give good result on a stationary data, but these smoothing algorithms don’t give expected result in a non-stationary data. Studying Acceleration data is an effective method to see whether the smoothing is successful or not. The small part of the noise that takes place in the Displacement data will affect our Acceleration data, which are obtained by taking the second derivative of the Displacement data, severely. In this thesis, some linear and non-linear smoothing algorithms will be analyzed in a non-stationary dataset.
Subject Keywords
Computer enginnering.
URI
http://etd.lib.metu.edu.tr/upload/3/12611899/index.pdf
https://hdl.handle.net/11511/19655
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Using semantic web services for data integration in banking domain
Okat, Çağlar; Doğru, Ali Hikmet; Department of Computer Engineering (2010)
A semantic model oriented transformation mechanism is developed for the centralization of intra-enterprise data integration. Such a mechanism is especially crucial in the banking domain which is selected in this study. A new domain ontology is constructed to provide basis for annotations. A bottom-up approach is preferred for semantic annotations to utilize existing web service definitions. Transformations between syntactic web service XML responses and semantic model concepts are defined in transformation ...
Improvement of corpus-based semantic word similarity using vector space model
Esin, Yunus Emre; Alpaslan, Ferda Nur; Department of Computer Engineering (2009)
This study presents a new approach for finding semantically similar words from corpora using window based context methods. Previous studies mainly concentrate on either finding new combination of distance-weight measurement methods or proposing new context methods. The main di fference of this new approach is that this study reprocesses the outputs of the existing methods to update the representation of related word vectors used for measuring semantic distance between words, to improve the results further. ...
Natural language query processing in ontology based multimedia databases
Aygül, Filiz Alaca; Çiçekli, Fehime Nihan; Department of Computer Engineering (2010)
In this thesis a natural language query interface is developed for semantic and spatio-temporal querying of MPEG-7 based domain ontologies. The underlying ontology is created by attaching domain ontologies to the core Rhizomik MPEG-7 ontology. The user can pose concept, complex concept (objects connected with an “AND” or “OR” connector), spatial (left, right . . . ), temporal (before, after, at least 10 minutes before, 5 minutes after . . . ), object trajectory and directional trajectory (east, west, southe...
Coevolution based prediction of protein-protein ınteractions with reduced training data
Pamuk, Bahar; Can, Tolga; Department of Computer Engineering (2009)
Protein-protein interactions are important for the prediction of protein functions since two interacting proteins usually have similar functions in a cell. Available protein interaction networks are incomplete; but, they can be used to predict new interactions in a supervised learning framework. However, in the case that the known protein network includes large number of protein pairs, the training time of the machine learning algorithm becomes quite long. In this thesis work, our aim is to predict protein-...
Hanolistic : a hierarchical automatic image annotation system using holistic approach
Öztimur, Özge; Yarman Vural, Fatoş Tunay; Department of Computer Engineering (2008)
Automatic image annotation is the process of assigning keywords to digital images depending on the content information. In one sense, it is a mapping from the visual content information to the semantic context information. In this thesis, we propose a novel approach for automatic image annotation problem, where the annotation is formulated as a multivariate mapping from a set of independent descriptor spaces, representing a whole image, to a set of words, representing class labels. For this purpose, a hiera...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
F. Titrek, “Smoothing and differentiation of dynamic data,” M.S. - Master of Science, Middle East Technical University, 2010.