Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Cyclic volumetric and shear strain responses of fine-grained soils
Download
index.pdf
Date
2010
Author
Bilge, Habib Tolga
Metadata
Show full item record
Item Usage Stats
305
views
139
downloads
Cite This
Although silt and clay mixtures were mostly considered to be resistant to cyclic loading due to cohesional components of their shear strength, ground failure case histories compiled from fine grained soil profiles after recent earthquakes (e.g. 1994 Northridge, 1999 Adapazarı, 1999 Chi-Chi) revealed that the responses of low plasticity silt and clay mixtures are also critical under cyclic loading. Consequently, understanding the cyclic response of these soils has become a recent challenge in geotechnical earthquake engineering practice. While most of the current attention focuses on the assessment of liquefaction susceptibility of fine-grained soils, it is believed that cyclic strain and strength assessments of silt and clay mixtures need to be also studied as part of complementary critical research components. Inspired by these gaps, a comprehensive laboratory testing program was designed. As part of the laboratory testing program 64 stress-controlled cyclic triaxial tests, 59 static strain-controlled consolidated undrained triaxial tests, 17 oedometer, 196 soil classification tests including sieve analyses, hydrometer, and consistency tests were performed. Additionally 116 cyclic triaxial test results were compiled from available literature. Based on this data probability-based semi-empirical models were developed to assess liquefaction susceptibility and cyclic-induced shear strength loss, cyclically-induced maximum shear, post-cyclic volumetric and residual shear strains of silt and clay mixtures. Performance comparisons of the proposed model alternatives were studied, and it is shown that the proposed models follow an unbiased trend and produce superior predictions of the observed laboratory test response. Superiority of the proposed alternative models was proven by relatively smaller model errors (residuals).
Subject Keywords
Civil engineering.
,
Foundations, Earthwork.
URI
http://etd.lib.metu.edu.tr/upload/3/12611819/index.pdf
https://hdl.handle.net/11511/19689
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
A laboratory study of fracture grouting technique in sand
Tunçdemir, Fatih; Ergun, Mehmet Ufuk; Department of Civil Engineering (2008)
In this study, fracture grouting technique of saturated, granular soils of different fine content were investigated. Model tests were carried out by using fluid particulate grouts namely micro fine cement and ordinary portland cement grouts. Basically, relationships were obtained between soil conditions (grain size distribution, relative density, overburden stress) and grouting parameters (type of grout, grouting pressure, amount of injected grout, rheological properties of the grout or water/solids ratio)....
Assessment of liquefaction susceptibility of fine grained soils
Pehlivan, Menzer; Çetin, Kemal Önder; Department of Civil Engineering (2009)
Recent ground failure case histories after 1994 Northridge, 1999 Kocaeli and 1999 Chi-Chi earthquakes revealed that low-plasticity silt-clay mixtures generate significant cyclic pore pressures and can exhibit a strain-softening response, which may cause significant damage to overlying structural systems. These observations accelerated research studies on liquefaction susceptibility of fine-grained soils. Alternative approaches to Chinese Criteria were proposed by several researchers (Seed et al. 2003, Bray ...
Comparison of analysis methods of embedded retaining walls
Harmandar, Serkan; Özkan, M. Yener; Department of Civil Engineering (2006)
In this study a single-propped embedded retaining wall supporting a cohesionless soil is investigated by four approaches, namely limit equilibrium, subgrade reaction, pseudo-finite element and finite element methods. Structural forces, such as strut loads, wall shear forces, bending moments are calculated by each method and results are compared. The analyses are carried for for three values of internal friction angle of soil; 30o, 35o, and 40o. Effects of modulus of soil elasticity of the backfill and wall ...
Analytical prediction of thermal displacement capacity of integral bridges built on sand
Dicleli, Murat (SAGE Publications, 2005-02-01)
In this research, analytical equations are developed to calculate the lateral displacement capacity and maximum length limits of integral bridges built on sand based on the low-cycle fatigue performance of the piles under cyclic thermal variations and the ultimate strength of the abutment under positive thermal variations. To formulate the displacement capacity and maximum length limits of integral bridges based on the low cycle fatigue performance of steel H-piles under cyclic thermal variations, first, H-...
Seismic Performance Evaluation of Concrete Gravity Dams by Using Pseudo Dynamic Testing and Simulations
Aldemir, Alper; Binici, Barış (null; 2017-11-24)
Dams are one of the mostimportantinfrastructure components servingfor water storage and energyproduction.Experimental studies on the seismic response of concrete gravity dams are scarce due to the complications regarding thelargescaleof dams and their interaction with the reservoir. This study presents the results of recent novel pseudo-dynamic dam tests (PSD) along with the nonlinear finite element simulations of the specimens. The test specimens were 1/75 scaled version of the highest ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. T. Bilge, “Cyclic volumetric and shear strain responses of fine-grained soils,” Ph.D. - Doctoral Program, Middle East Technical University, 2010.