Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Determination of cuttings transport properties of gasified drilling fluids
Download
index.pdf
Date
2010
Author
Ettehadi Osgouei, Reza
Metadata
Show full item record
Item Usage Stats
383
views
177
downloads
Cite This
The studies conducted on hole cleaning have been started with single phase drilling fluids for vertical holes in 1930’s, and have reached to multiphase drilling fluids for directional and horizontal wells today. The influence of flow rate and hole inclination on cuttings transport has been well understood, and many studies have been conducted on effective hole cleaning either experimentally or theoretically. However, neither the hydraulic behavior nor the hole cleaning mechanism of gasified drilling fluids has been properly understood. The aims of this study are to investigate and analyze the hole cleaning performance of gasified drilling fluids in horizontal, directional and vertical wells experimentally, to identify the drilling parameters those have the major influence on cuttings transport, to define the flow pattern types and boundaries as well as to observe the behavior of cuttings in detail by using digital image processing techniques, and to develop a mechanistic model based on the fundamental principles of physics and mathematics with the help of the experimental observations. A mechanistic model is developed with the help of the obtained experimental data. Developed model is used for estimating optimum flow rates for liquid and gas phases for effective cuttings transport as well as for determining the total pressure losses and void fraction of each phase for a given drilling conditions. The v mechanistic model obtained using the experimental data within the scope of this study will be used to develop the hydraulic program and equipment selection to be used in the field during underbalanced drilling applications.
Subject Keywords
Directional drilling.
,
Oil well drilling.
URI
http://etd.lib.metu.edu.tr/upload/12612676/index.pdf
https://hdl.handle.net/11511/20037
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Experimental investigation of cuttings transport in horizontal wells using aerated drilling fluid
Gül, Sercan; Parlaktuna, Mahmut; Kuru, Ergün; Department of Petroleum and Natural Gas Engineering (2017)
A new experimental approach has been introduced in this thesis for the cuttings transport in horizontal wellbores with the introduction of drag reducers into the aerated drilling fluids. Advanced Flow Loop System (annular test section of 21 ft. long 2.91-in. ID transparent casing and 1.85 in. OD inner drill pipe) in Middle East Technical University Petroleum and Natural Gas Engineering Department have been used for the experiments. The liquid phase has been water and water-PHPA copolymer mixture where the g...
Trajectory estimation in directional drilling using bottom hole assembly(bha) analysis
Doğay, Serkan; Kök, Mustafa Verşan; Department of Petroleum and Natural Gas Engineering (2007)
The aim of this study is to combine the basic concepts of mechanics on drill string which are related to directional drilling, thus finding a less complicated and more economical way for drilling directional wells. Slick BHA, which has no stabilizers attached and single stabilizer BHA are analyzed through previously derived formulas gathered from the literature that are rearranged for this study. An actual directional well is redrilled theoretically with a slick BHA and a computer program is assembled for c...
An Experimental study of particle size and concentration effects of calcium carbonate on rheological and filtration properties of drill-in fluids
Odabaşı, Aydın; Kök, Mustafa Verşan; Gücüyener, İ. Hakkı; Department of Petroleum and Natural Gas Engineering (2015)
Specially designed non-damaging Drill-In Fluids (DIF) are being effectively applied for drilling depleted zones worldwide. Shape, particle size distribution and concentration of materials like calcium carbonate (CaCO3) are key parameters determining the effectiveness of DIF. In this study, 3 different sized and 5 different concentrations CaCO3 are used to examine the effects of these factors on rheology and fluid loss of DIF. Sized calcium carbonates are used as major particles in different concentrations a...
Economical impact of a dual gradient drilling system
Peker, Merter; Parlaktuna, Mahmut; Department of Petroleum and Natural Gas Engineering (2012)
Dual Gradient Drilling (DGD) system is a promising technology that was developed to overcome the deep water drilling problems occurred due to narrow operating window between pore pressure and fracture pressure. In conventional drilling practice, single mud weight exists from drilling unit to TVD (True Vertical Depth) which creates big hydrostatic pressure in bottom hole ,moreover, minor changes in mud weight results a big pressure changes proportional to the length of hydrostatic column increase with water ...
An Experimental study on usage of hollow glass spheres (HGS) for reducing mud density in low pressure reservoirs and lost circulation zones
Arı, T. Çağrı; Akın, Serhat; Department of Petroleum and Natural Gas Engineering (2014)
Drilling fluid is a fluid mixture that is used in oil and gas drilling operations. Generating hydrostatic pressure, carrying cuttings to the surface and maintaining wellbore stability is essential for a drilling fluid with its other important functions. For low pressure reservoirs, hydrostatic pressure that drilling fluid generated should be low. To achieve that, drilling fluid density should be lowered. However, use of drilling fluids with higher density than required could cause partial or complete loss o...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
R. Ettehadi Osgouei, “Determination of cuttings transport properties of gasified drilling fluids,” Ph.D. - Doctoral Program, Middle East Technical University, 2010.