Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Development of a grid-aware master worker framework for artificial evolution
Download
index.pdf
Date
2010
Author
Ketenci, Ahmet
Metadata
Show full item record
Item Usage Stats
177
views
84
downloads
Cite This
Genetic Algorithm (GA) has become a very popular tool for various kinds of problems, including optimization problems with wider search spaces. Grid search techniques are usually not feasible or ineffective at finding a solution, which is good enough. The most computationally intensive component of GA is the calculation of the goodness (fitness) of candidate solutions. However, since the fitness calculation of each individual does not depend each other, this process can be parallelized easily. The easiest way to reach high amounts of computational power is using grid. Grids are composed of multiple clusters, thus they can offer much more resources than a single cluster. On the other hand, grid may not be the easiest environment to develop parallel programs, because of the lack of tools or libraries that can be used for communication among the processes. In this work, we introduce a new framework, GridAE, for GA applications. GridAE uses the master worker model for parallelization and offers a GA library to users. It also abstracts the message passing process from users. Moreover, it has both command line interface and web interface for job management. These properties makes the framework more usable for developers even with limited parallel programming or grid computing experience. The performance of GridAE is tested with a shape optimization problem and results show that the framework is more convenient to problems with crowded populations.
Subject Keywords
Genetic algorithms.
,
Analysis.
,
Computer Engineering.
URI
http://etd.lib.metu.edu.tr/upload/12612881/index.pdf
https://hdl.handle.net/11511/20355
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Evaluation of crossover techniques in genetic algorithm based optimum structural design
Hasançebi, Oğuzhan (2000-11-01)
Crossover is one of the three basic operators in any genetic algorithm (GA). Several crossover techniques have been proposed and their relative merits are currently under investigation. This paper starts with a brief discussion of the working scheme of the GAs and the crossover techniques commonly used in previous GA applications. Next, these techniques are tested on two truss size optimization problems, and are evaluated with respect to exploration and exploitation aspects of the search process. Finally, t...
A method for chromosome handling of r-permutations of n-element set in genetic algorithms
Üçoluk, Göktürk (1997-04-16)
Combinatorial optimisation problems are in the domain of Genetic Algorithms (GA) interest. Unfortunately ordinary crossover and mutation operators cause problems for chromosome representations of permutations and some types of combinations. This is so because offsprings generated by means of the ordinary operators are of a great possibility no more valid chromosomes. A variety of methods and new operators that handle that sort of obscenities are introduced throughout the literature. A new method for represe...
An Efficient Metaheuristic Algorithm for Engineering Optimization: SOPT
Hasançebi, Oğuzhan (2012-06-01)
Metaheuristic algorithms are well-known optimization tools which have been employed for solving a wide range of optimization problems so far. In the present study, a simple optimization (SOPT) algorithm with two main steps; namely exploration and exploitation, is provided for practical applications. Aside from a reasonable rate of convergence attained, the ease in its implementation and dependency on few parameters only are among the advantageous characteristics of the proposed SOPT algorithm. The efficienc...
Identifying preferred solutions in multiobjective combinatorial optimization problems
Lokman, Banu (2019-01-01)
We develop an evolutionary algorithm for multiobjective combinatorial optimization problems. The algorithm aims at converging the preferred solutions of a decision-maker. We test the performance of the algorithm on the multiobjective knapsack and multiobjective spanning tree problems. We generate the true nondominated solutions using an exact algorithm and compare the results with those of the evolutionary algorithm. We observe that the evolutionary algorithm works well in approximating the solutions in the...
Optimization of physical parameters of an underactuated quadrupedal robot
Karagoz, Osman Kaan; Ankaralı, Mustafa Mert (2018-01-01)
In this paper, we present the comparison of different optimization algorithms that are used to optimize the parameters of a simulated legged robotic platform. We compare the results obtained by applying different algorithms on the same model and show the relative advantages and disadvantages of these algorithms. The tested algorithms are Particle Swarm Optimization, Binary Coded Genetic Algorithm, Broyden-Fletcher-Goldfrab-Shannon Algorithm and Method of Zoutendijk. We showed that the globally optimal param...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Ketenci, “Development of a grid-aware master worker framework for artificial evolution,” M.S. - Master of Science, Middle East Technical University, 2010.