Landing autopilot design for an UAV

Hanköylü, Merve
In this thesis, a landing autopilot for an UAV (IAI Pioneer RQ-2) is designed based on a nonlinear MATLAB model implemented with MATLAB/Simulink. In order to control the movement of the UAV at lateral and longitudinal axes, a speed, an altitude, a heading angle (direction) and a yaw rate controllers are designed. Controller design procedure is started with determination of different trim points of the aircraft. Next, the corresponding initial states and initial inputs are obtained. The model is linearized about those trim points and the gain values are determined. The resultant gain scheduled controller is used on the non-linear model. The response of the aircraft to these controllers is tested in a constrained landing area that is constructed with respect to applicable aviation regulations. The aircraft position is investigated whether it is inside or outside of this safe landing area. If it is inside, an optimized landing path set is obtained. The steepest descent method is used for multidimensional search and parabolic fit method is used for one dimensional search (as line search) in the optimization phase. In case it is outside the defined landing area a special algorithm which takes the aircraft into the desired region is applied. In addition, the area is allowed to move as much as possible depending on the situation with special regards to the length of the runway. Also a lateral position controller is designed in order to provide the reach of the aircraft to the main landing path.


Landing autopilot design for an unmanned aerial vehicle /
Ak, Ayşe İlden; Leblebicioğlu, Mehmet Kemal; Department of Electrical and Electronics Engineering (2014)
In this thesis, studies for the development of a landing autopilot for the UAV (Unmanned Aerial Vehicle), Pioneer RQ2 are presented. Firstly, 6 DOF (degree of freedom) nonlinear model of Pioneer is implemented in Matlab-Simulink based on FDC (Flight Dynamics and Control) Toolbox. Then, in accordance with steady-state wings level flight condition, trim points are found for different airspeed values, constant height and zero flight path angle. The nonlinear model of Pioneer is linearized at these trim points ...
System identification and control of a sea surface vehicle
Erünsal, İzzet Kağan; Leblebicioğlu, Mehmet Kemal; Department of Electrical and Electronics Engineering (2015)
In this study, modeling, system identification and controller design for a sea surface vehicle are performed to facilitate major goals such as autopilot design and guidance. The vehicle has been modeled by a combination of several approaches proposed in the literature. For system identification purposes, a time domain, offline, deterministic, gray-box methodology is developed. In this methodology, efficient optimization algorithms such as genetic algorithm (GA) and global search algorithm (GS) are utilized ...
Control and guidance of an unmanned sea surface vehicle
Ahıska, Kenan; Leblebicioğlu, Mehmet Kemal; Department of Electrical and Electronics Engineering (2012)
In this thesis, control and guidance algorithms for unmanned sea surface vehicles are studied. To design control algorithms of different complexity, first a mathematical model for an unmanned sea surface vehicle is derived. The dynamical and kinematical equations for a sea surface vehicle are obtained, and they are adapted to real life conditions with necessary additions and simplifications. The forces and torques effecting on the vehicle are investigated in detail. Control algorithms for under-actuated six...
Vision-aided landing for fixed wing unmanned aerial vehicle
Esin, Engin; Kutay, Ali Türker; Department of Aerospace Engineering (2016)
The aim of this thesis is to design an autoland system for fixed wing unmanned aerial vehicle (UAV) to make auto landing by using position information calculated by image processing algorithms. With this ability, even if GPS is not available to be used, UAV still could make a safe automatic landing. Landing autopilot is aimed to keep UAV on a straight line with a constant flight path angle. Therefore, landing autopilot and computer vision methods are studied within the scope of this thesis. Also, to test de...
Autopilot and guidance design for a Mini ROV (Remotely Operated Underwater Vehicle
Cevher, Fırat Yılmaz; Leblebicioğlu, Mehmet Kemal; Department of Electrical and Electronics Engineering (2012)
This thesis consists of a mathematical model, autopilot and guidance design of a mini ROV (Remotely Operated Underwater Vehicle) and investigates the effects of environmental forces (ocean currents etc.) on the guidance algorithms. First of all, a non-linear 6 degrees-of-freedom (DOF) mathematical model is obtained. This model includes hydrodynamics forces and moments. There is no exact calculation method for hydrodynamic coefficients; however strip theory and results of computational fluid dynamics (CFD) a...
Citation Formats
M. Hanköylü, “Landing autopilot design for an UAV,” M.S. - Master of Science, Middle East Technical University, 2011.