Subsurface structure of the central Thrace basin from 3d seismic reflection data

Download
2011
Taikulakov, Yerlan
The Thrace Basin located in northwest Turkey displays attractive prospective traps for hydrocarbon and has received much attention from the petroleum industry. Despite the extensive exploration efforts, there are only few studies which address the fault kinematics and deformation mechanism of the region in connection with structural development. In this study, 3D raw seismic data set collected around Temrez High near Babaeski fault zone will be processed and interpreted along with the available borehole data to reveal the subsurface structure of the region that will contribute towards understanding the Neogene tectonic evolution of the central Thrace basin, origin of the transcurrent tectonics and possible role of the North Anatolian Fault Zone.

Suggestions

Kinematics of Delice-Kozaklı fault zone (North Central Anatolia, Turkey)
Tokay, Bülent; Bozkurt, Erdin; Kaymakcı, Nuretdin; Department of Geological Engineering (2015)
The Central Anatolian Crystalline Complex (CACC) forms a part of Alpine orogenic belt in Turkey and incorporates three major massifs and several basins that developed during extension commenced by the Late Cretaceous. They were deformed during subsequent collision of Anatolide-Tauride Platform and Pontides. The deformation of the region has resulted in the break-up of the CACC along major deformation (fault) zones. The present study aims to test existence of one of these fault zones, namely Delice-Kozaklı f...
Neo- and seismo-tectonic characteristics of the Yenigediz (Kütahya) area
Gürboğa, Şule; Koçyiğit, Ali; Department of Geological Engineering (2011)
Erdoğmuş-Yenigediz graben is one of the major structural elements of Akşehir-Simav Fault System (ASFS), which is a major extensional structure in the southwestern Anatolian extensional neotectonic province (SWAEP). It is about 6-10-km-wide, 15-km-long and approximately ENE-trending and is actively growing structure as indicated by the 1970.03.28 (Mw= 7.2) Gediz earthquake. The graben is characterized by two distinct units, separated by an angular unconformity: (i) Miocene-middle Pliocene Arıca formation and...
Tectonic evolution of the Gediz Graben: field evidence for an episodic, two-stage extension in western Turkey
Bozkurt, Erdin (Cambridge University Press (CUP), 2004-01-01)
Western Turkey is one of the most spectacular regions of widespread active continental extension in the world. The most prominent structures of this region are E-W-trending grabens (e.g. Gediz and Buyuk Menderes grabens) and intervening horsts, exposing the Menderes Massif. This paper documents the result of a recent field campaign (field geological mapping and structural analysis) along the southern margin of the modern Gediz Graben of Pliocene (similar to 5 Ma) age. This work provides field evidence that ...
Tectono-stratigraphic evolution of the continental miocene basins in Southwest Anatolia
Koç, Ayten; Kaymakcı, Nuretdin; Van Hinsbergen, Douwe J. J.; Department of Geological Engineering (2013)
The Tauride range in southern Turkey is flanked and overlain by Neogene sedimentary basins. To the south and on top of the high range, these basins are mainly marine, whereas poorly studied intra-montane basins dominated by continental deposits are exposed to the north. In this study, the stratigraphy and structure of these continental basins which includes Altınapa, Yalvaç and Ilgın Basins are studied. Their stratigraphy of these basins displays poorly expressed fining upwards sequences of fluvio-lacustrin...
Geothermal resource assessment of the Gediz Graben utilizing TOPSIS methodology
Cambazoglu, Selim; Yal, Gozde Pinar; Eker, Arif Mert; Sen, Osman; Akgün, Haluk (Elsevier BV, 2019-07-01)
The Gediz Graben possesses the second highest geothermal power generation potential in Western Anatolia, Turkey. In this study, the geothermal resource potential of the Gediz Graben has been assessed by following an ideal point methodology. For this purpose, nine criteria layers were introduced into a GIS environment, namely, distance to faults and fault density, distance to cap rock units, hot springs and graben center, Gutenberg-Richter b-value map, night-time surface temperature, NDVI and slope. Each lay...
Citation Formats
Y. Taikulakov, “Subsurface structure of the central Thrace basin from 3d seismic reflection data,” M.S. - Master of Science, Middle East Technical University, 2011.