Tolerance based reliability of an analog electric circuit

Çakır, Sinan
This thesis deals with the reliability analysis of a fuel pump driver circuit (FPDC), which regulates the amount of fuel pumped to a turbojet engine. Reliability analysis in such critical circuits has great importance since unexpected failures may cause serious financial loss and even human death. In this study, two types of reliability analysis are used: “Worst Case Circuit Tolerance Analysis” (WCCTA) and “Failure Modes and Effects Analysis” (FMEA). WCCTA involves the analysis of the circuit operation under varying parameters in their tolerance bands. These parameters include the resistances of the resistors, operating temperature and voltage input value. The operation of FPDC is checked and the most critical parameters are determined in the worst case conditions. While performing WCCTA, a method that guarantees the exact worst case conditions is used rather than probabilistic methods like Monte Carlo analysis. The results showed that the parameter variations do not affect the circuit operation unfavorably; operating temperature, voltage input variation and tolerance bands for the resistances are fairly compatible with the circuit operation. FMEA is implemented according to the short circuit and open circuit failures of all the electronic components used in FPDC. The components whose failure has catastrophic effect on the circuit operation have been determined and some preventive actions have been offered for some catastrophic failures.
Citation Formats
S. Çakır, “Tolerance based reliability of an analog electric circuit,” M.S. - Master of Science, Middle East Technical University, 2011.