Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Well test analysis in the presence of carbon dioxide in fractured reservoirs
Download
index.pdf
Date
2011
Author
Bayram, Tuğçe
Metadata
Show full item record
Item Usage Stats
202
views
123
downloads
Cite This
The application of carbon-dioxide injection for enhanced oil recovery and/or sequestration purposes has gained impetus in the last decade. It is known that well test analysis plays a crucial role on getting information about reservoir properties, boundary conditions, etc. Although there are some studies related to the well test analysis in the fractured reservoirs, most of them are not focused on the carbon dioxide injection into the reservoir. Naturally fractured reservoirs (NFR) represent an important percentage of the worldwide hydrocarbon reserves and current production. Reservoir simulation is a fundamental technique in characterizing this type of reservoirs. Fracture properties are often not clear due to difficulty to characterize the fracture systems. On the other hand, well test analysis is a well known and widely applied reservoir characterization technique. Well testing in NFR provides two significant characteristic parameters, storativity ratio (ω) and interporosity flow coefficient (λ). The storativity ratio is related to fracture porosity. The interporosity flow coefficient can be linked to the shape factor which is a function of fracture spacing. In this study, the effects of fracture and fluid flow factors (geometry, orientation and flow properties) on pressure and pressure derivative behavior are studied by applying a reservoir simulation model. Model is utilized mainly for the observation of multiphase flow effects in CO2 flooded fractured reservoirs. Several runs are conducted for various ranges of the aforementioned properties in the CO2 flooded reservoir. Results of well test analysis are compared to the input data of simulation models on a parameter basis.
Subject Keywords
Gas wells
URI
http://etd.lib.metu.edu.tr/upload/12613273/index.pdf
https://hdl.handle.net/11511/20540
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
The Use of capacitance-resistive models for estimation of interwell connectivity & heterogeneity in a waterflooded reservoir: a case study
Gözel, Mustafa Erkin; Akın, Serhat; Department of Petroleum and Natural Gas Engineering (2015)
Increasing the oil recovery from the hydrocarbon reservoirs is becoming the most important issue for the oil & gas industry with the increase in energy demand and developing technologies. Waterflooding is one of the most preferable methods because of its success ratio, application ease and cost efficiency. Beside mentioned advantages, this method must be carefully planned and performed by considering reservoir heterogeneities to avoid unexpected poor recoveries. As an alternative to the reservoir modeling a...
Evaluation of limestone incorporated cement compositions for cementing gas hydrate zones in deepwater environments
Hıdıroğlu, İnanç Alptuğ; Parlaktuna, Mahmut; Yaman, İsmail Özgür; Department of Petroleum and Natural Gas Engineering (2017)
One of the potential problems which must be overcome during oil or gas exploration in deepwater environments is to complete the drilling operations without decomposing the gas hydrates. Gas hydrates remain stable as long as the thermodynamic conditions are not changed. But, especially by increasing temperature during drilling operations, there is always a possibility of change in thermodynamic conditions, which will cause decomposition. Another factor which may disturb the thermodynamic conditions is the ev...
Bacteria for improvement of oil recovery: A laboratory study
Behlulgil, K; Mehmetoğlu, Mustafa Tanju (2002-05-01)
In microbial enhanced oil recovery (MEOR) technique, microorganisms and/or their products (gases, chemicals) are used in the enhancement of oil recovery. In the present study, MEOR is tested for Garzan (26degrees API) crude oil, produced from Southeast Turkey. This work consists of shut-in pressure tests and microbial water flooding experiments. In shut-in pressure tests, the oil is placed in a stainless steel cell and a certain amount of microbial solution (Clostridium acetobutylicum) is introduced. During...
Pressure- and rate- transient analysis of the simulated single and multi-fractured horizontal wells drilled in shale gas reservoirs
Jafarlı, Tural; Sınayuç, Çağlar; Department of Petroleum and Natural Gas Engineering (2013)
Nowadays, the bigger portion of produced oil and gas come from conventional resources all over the globe and these resources are being depleted in a severe manner. Over the past decade, the combination of horizontal drilling and hydraulic fracturing has allowed access to large volumes of shale gas that were previously uneconomical to produce. In recent years, they are seriously considered as supplementary to the conventional resources although these reservoirs cannot be produced at an economic rate or canno...
Chemical alteration of oil well cement with basalt additive during carbon storage application
Mokhtari Jadid, Kahila; Okandan, Ender; Department of Petroleum and Natural Gas Engineering (2011)
Capturing and storing carbon dioxide (CO2) underground for thousands of years is one way to reduce atmospheric greenhouse gases, often associated with global warming. Leakage of CO2 through wells is one of the major concerns when storing CO2 in depleted oil and gas reservoirs. CO2-injection candidates could be new wells, or old wells that are active, closed or abandoned. To prevent the leakage, the possible leakage paths and the mechanisms triggering these paths must be examined and identified. It is known ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
T. Bayram, “Well test analysis in the presence of carbon dioxide in fractured reservoirs,” M.S. - Master of Science, Middle East Technical University, 2011.