Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Fixed point scheme of the Hilbert Scheme under a 1-dimensional additive algebraic group action
Download
index.pdf
Date
2011
Author
Özkan, Engin
Metadata
Show full item record
Item Usage Stats
102
views
78
downloads
Cite This
In general we know that the fixed point locus of a 1-dimensional additive linear algebraic group,G_{a}, action over a complete nonsingular variety is connected. In thesis, we explicitly identify a subset of the G_{a}-fixed locus of the punctual Hilbert scheme of the d points,Hilb^{d}(P^{2}; 0),in P^{2}. In particular we give an other proof of the fact that Hilb^{d}(P^{2}; 0) is connected.
Subject Keywords
Hilbert schemes.
,
Surfaces, Algebraic.
URI
http://etd.lib.metu.edu.tr/upload/12613165/index.pdf
https://hdl.handle.net/11511/20676
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Equivariant vector fields on three dimensional representation spheres
Gürağaç, Hami Sercan; Önder, Mustafa Turgut; Department of Mathematics (2011)
Let G be a finite group and V be an orthogonal four-dimensional real representation space of G where the action of G is non-free. We give necessary and sufficient conditions for the existence of a G-equivariant vector field on the representation sphere of V in the cases G is the dihedral group, the generalized quaternion group and the semidihedral group in terms of decomposition of V into irreducible representations. In the case G is abelian, where the solution is already known, we give a more elementary so...
Finite type points on subsets of C-n
Yazıcı, Özcan (Elsevier BV, 2020-07-01)
In [4], D'Angelo introduced the notion of points of finite type for a real hypersurface M subset of C-n and showed that the set of points of finite type in M is open. Later, Lamel-Mir [8] considered a natural extension of D'Angelo's definition for an arbitrary set M subset of C-n. Building on D'Angelo's work, we prove the openness of the set of points of finite type for any subset M subset of C-n.
Knotting of algebraic curves in CP2
Finashin, Sergey (2002-01-01)
For any k⩾3, I construct infinitely many pairwise smoothly non-isotopic smooth surfaces homeomorphic to a non-singular algebraic curve of degree 2k, realizing the same homology class as such a curve and having abelian fundamental group ⧹ . This gives an answer to Problem 4.110 in the Kirby list (Kirby, Problems in low-dimensional topology, in: W. Kazez (Ed.), Geometric Topology, AMS/IP Stud. Adv. Math. vol 2.2, Amer. Math. Soc., Providence, 1997).
Almost periodic solutions of the linear differential equation with piecewise constant argument
Akhmet, Marat (2009-10-01)
The paper is concerned with the existence and stability of almost periodic solutions of linear systems with piecewise constant argument where t∈R, x ∈ Rn [·] is the greatest integer function. The Wexler inequality [1]-[4] for the Cauchy's matrix is used. The results can be easily extended for the quasilinear case. A new technique of investigation of equations with piecewise argument, based on an integral representation formula, is proposed. Copyright © 2009 Watam Press.
Finite bisimulations for switched linear systems
Aydın Göl, Ebru; Lazar, Mircea; Belta, Calin (2013-02-04)
In this paper, we consider the problem of constructing a finite bisimulation quotient for a discrete-time switched linear system in a bounded subset of its state space. Given a set of observations over polytopic subsets of the state space and a switched linear system with stable subsystems, the proposed algorithm generates the bisimulation quotient in a finite number of steps with the aid of sublevel sets of a polyhedral Lyapunov function. Starting from a sublevel set that includes the origin in its interio...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. Özkan, “Fixed point scheme of the Hilbert Scheme under a 1-dimensional additive algebraic group action,” Ph.D. - Doctoral Program, Middle East Technical University, 2011.