Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Equivariant vector fields on three dimensional representation spheres
Download
index.pdf
Date
2011
Author
Gürağaç, Hami Sercan
Metadata
Show full item record
Item Usage Stats
148
views
53
downloads
Cite This
Let G be a finite group and V be an orthogonal four-dimensional real representation space of G where the action of G is non-free. We give necessary and sufficient conditions for the existence of a G-equivariant vector field on the representation sphere of V in the cases G is the dihedral group, the generalized quaternion group and the semidihedral group in terms of decomposition of V into irreducible representations. In the case G is abelian, where the solution is already known, we give a more elementary solution.
Subject Keywords
Geometry, Algebraic.
,
Linear algebraic groups.
URI
http://etd.lib.metu.edu.tr/upload/12613781/index.pdf
https://hdl.handle.net/11511/21120
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Equivariant cross sections of complex Stiefel manifolds
Onder, T (Elsevier BV, 2001-01-16)
Let G be a finite group and let M be a unitary representation space of G. A solution to the existence problem of G-equivariant cross sections of the complex Stiefel manifold W-k(M) of unitary k-frames over the unit sphere S(M) is given under mild restrictions on G and on fixed point sets. In the case G is an even ordered group, some sufficient conditions for the existence of G-equivariant real frame fields on spheres with complementary G-equivariant complex structures are also obtained, improving earlier re...
Hilbert functions of gorenstein monomial curves
Topaloğlu Mete, Pınar; Arslan, Sefa Feza; Department of Mathematics (2005)
The aim of this thesis is to study the Hilbert function of a one-dimensional Gorenstein local ring of embedding dimension four in the case of monomial curves. We show that the Hilbert function is non-decreasing for some families of Gorenstein monomial curves in affine 4-space. In order to prove this result, under some arithmetic assumptions on generators of the defining ideal, we determine the minimal generators of their tangent cones by using the standard basis and check the Cohen-Macaulayness of them. Lat...
Equivariant Picard groups of the moduli spaces of some finite Abelian covers of the Riemann sphere
Ozan, Yıldıray (2023-03-01)
In this note, following Kordek's work we will compute the equivariant Picard groups of the moduli spaces of Riemann surfaces with certain finite abelian symmetries.
Homology of real algebraic varieties and morphisms to spheres
Öztürk, Ali; Ozan, Yıldıray; Department of Mathematics (2005)
Let X and Y be affine nonsingular real algebraic varieties. One of the classical problems in real algebraic geometry is whether a given C1 mapping f : X ! Y can be approximated by regular mappings in the space of C1 mappings. In this thesis, we obtain some sufficient conditions in the case when Y is the standard sphere Sn. In the second part of the thesis, we study mainly the kernel of the induced map on homology i : Hk(X,R) ! Hk(XC,R), where i : X ! XC is a nonsingular projective complexification. First, u...
Locatization techniques in computation of equivariant J-groups and equivariant cross sections of stiefel manifolds
Obiedat, Mohammad; Önder, Mustafa Turgut; Department of Mathematics (1998)
Let G be a finite group and X be a finite G-connected G-CW complex. The main purpose of this dissertation is to find means for computing the equivariant J-groups, JOG(X), and then to obtain solutions for the equivariant cross section problem of Stiefel manifolds. We give an alternative method for computing JOG(X). We do our computations for the cases: X is a free G-space, X is a trivial G-space, and X is a one point set. We find the orders of elements of JOG(FPk) for various projective spaces, and then we u...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. S. Gürağaç, “Equivariant vector fields on three dimensional representation spheres,” Ph.D. - Doctoral Program, Middle East Technical University, 2011.