Pid and lqr control of a planar head stabilization platform

Download
2011
Akgül, Emre
During the uniform locomotion of legged robots with compliant legs, the body of the robot exhibits quasi-periodic oscillations that have a disturbing e ect on di erent onboard sensors. Of particular interest is the camera sensor which su ers from image degradation in the form of motion-blur as a result of this camera motion. The e ect of angular disturbances on the camera are pronounced due to the perspective projection property of the camera. The thesis focuses on the particular problem of legged robots exhibiting angular body motions and attempts to analyze and overcome the resulting disturbances on a camera carrying platform (head). Although the full problem is in 3D with three independent axes of rotation, a planar analysis provides signi cant insight into the problem and is the approach taken in the thesis. A carefully modeled planar version of an actual camera platform with realistic mechanical and actuator selections is presented. Passive ( ltering) and active (controller) approaches are discussed to compensate/cancel motion generated disturbances. We consider and comparatively evaluate PID and LQR based active control. Since PID has the limitation of controlling only one output, PID-PID control is considered to iv control two states of the model. Due to its state-space formulation and the capability of controlling an arbitrary number of states, LQR is considered. In addition to standard reference signals, Gyroscope measured disturbance signals are collected from the actual robot platform to analyze the bandwidth and test the performance of the controllers. Inverted pendulum control performance is evaluated both on a Matlab-Simulink as well as a precise electro-mechanical test setup. Since construction of the planar head test setup is in progress, tests are conducted on simulation.

Suggestions

Multiple human trajectory prediction and cooperative navigation modeling in crowded scenes
Hacinecipoglu, Akif; Konukseven, Erhan İlhan; Koku, Ahmet Buğra (Springer Science and Business Media LLC, 2020-07-01)
As mobile robots start operating in environments crowded with humans, human-aware navigation is required to make these robots navigate safely, efficiently and in socially compliant manner. People navigate in an interactive and cooperative fashion so that, they are able to find their path to a destination even if there is no clear route leading to it. There are significant efforts to solve this problem for mobile robots; however, they are not scalable to high human density and learning based approaches depen...
Formation preserving path finding in 3-D terrains
Bayrak, Ali Galip; Polat, Faruk (Springer Science and Business Media LLC, 2012-03-01)
Navigation of a group of autonomous agents that are required to maintain a formation is a challenging task which has not been studied much especially in 3-D terrains. This paper presents a novel approach to collision free path finding of multiple agents preserving a predefined formation in 3-D terrains. The proposed method could be used in many areas like navigation of semi-automated forces (SAF) at unit level in military simulations and non-player characters (NPC) in computer games. The proposed path findi...
A comparative evaluation of adaptive and non-adaptive Sliding Mode, LQR & PID control for platform stabilization
Akgul, Emre; Mutlu, Mehmet; Saranlı, Afşar; Yazıcıoğlu, Yiğit (2012-12-01)
During the uniform locomotion of compliant legged robots and other terrain vehicles, the body of the robot often exhibits complex oscillations which may have a disturbing effect on onboard sensors. For a camera mounted on such a robot, due to perspective projection, the effects of angular disturbances are particularly pronounced as compared to translational disturbances. This paper is motivated by the particular problem of legged robots exhibiting angular body motions and attempts to evaluate the performanc...
BIRTH OF THE OBJECT: DETECTION OF OBJECTNESS AND EXTRACTION OF OBJECT SHAPE THROUGH OBJECT-ACTION COMPLEXES
KRAFT, Dirk; Pugeault, Nicolas; BAŞESKİ, Emre; POPOVIC, Mila; Kragic, Danica; Kalkan, Sinan; Woergoetter, Florentin; Krueger, Norbert (World Scientific Pub Co Pte Lt, 2008-06-01)
We describe a process in which the segmentation of objects as well as the extraction of the object shape becomes realized through active exploration of a robot vision system. In the exploration process, two behavioral modules that link robot actions to the visual and haptic perception of objects interact. First, by making use of an object independent grasping mechanism, physical control over potential objects can be gained. Having evaluated the initial grasping mechanism as being successful, a second behavi...
RHex: A biologically inspired hexapod runner
ALTENDORFER, R; MOORE, N; Komsuolu, H; BUEHLER, M; BROWN, HB; MCMORDIE, D; Saranlı, Uluç; FULL, R; KODITSCHEK, DE (2001-11-01)
RHex is an untethered, compliant leg hexapod robot that travels at better than one body length per second over terrain few other robots can negotiate at all. Inspired by biomechanics insights into arthropod locomotion, RHex uses a clock excited alternating tripod gait to walk and run in a highly maneuverable and robust manner. We present empirical data establishing that RHex exhibits a dynamical ("bouncing") gait-its mass center moves in a manner well approximated by trajectories from a Spring Loaded Invert...
Citation Formats
E. Akgül, “Pid and lqr control of a planar head stabilization platform,” M.S. - Master of Science, Middle East Technical University, 2011.