Parametric analysis of inelastic interaction in frame-wall structural systems

Download
2011
Seçkiner, Soner
The purpose of this thesis is to investigate the inelastic action in the reinforced concrete frame-wall structures analytically and with that analysis to follow the plastic formation of the structure. For this purpose, six mid-rise reinforced concrete buildings with frame-wall are modeled and analyzed to understand the effect of the height and base shear force ratio of the wall on the nonlinear interaction between reinforced concrete wall and frame members under static lateral loads and ground motion excitations. The parametric analysis is conducted by assuming planar response of the buildings under loadings. The buildings are generated considering the limit design concept suggested by Turkish Earthquake Code 2007 and Turkish Standards TS500, and the frame-wall members are modeled by using spread plasticity elements and fiber discretization of sections. In the analysis stage, each element section is divided into confined and unconfined regions for detailed modeling of the building by using OpenSEES nonlinear finite element program. Two dimensional analyses are conducted under static and dynamic loadings. For static pushover analyses, three different lateral load cases (Triangular, Uniform and First-Mode Lateral Load Patterns) are considered. For dynamic analyses, eight different ground motions are used. These ground motions are scaled to the corresponding design response spectrum suggested by Turkish Earthquake Code 2007 by using RSPMATCH program. Using the result of the complex and simplified analyses, inter-story drift ratios, plastic rotations and internal force distributions of the buildings are investigated.

Suggestions

A detailed analysis for evaluation of the degradation characteristics of simple structural systems
Kurtman, Burak; Erberik, Murat Altuğ; Department of Civil Engineering (2007)
Deterioration in the mechanical properties of concrete, masonry and steel structures are usually observed under repeated cyclic loading in the inelastic response range. Therefore such a behavior becomes critical when these types of structures are subjected to ground motions with specific characteristics. The objective of this study is to address the influence of degrading behavior on simple systems. The Structural Performance Database on the PEER web site, which contains the results of cyclic, lateral-load ...
Lateral load analysis of shear wall-frame structures
Akış, Tolga; Tokdemir, Turgut; Department of Engineering Sciences (2004)
The purpose of this study is to model and analyze the nonplanar shear wall assemblies of shear wall-frame structures. Two three dimensional models, for open and closed section shear wall assemblies, are developed. These models are based on conventional wide column analogy, in which a planar shear wall is replaced by an idealized frame structure consisting of a column and rigid beams located at floor levels. The rigid diaphragm floor assumption, which is widely used in the analysis of multistorey building st...
Nonlinear analysis of R/C low-rise shear walls
Mansour, Mohamad Y.; Dicleli, Murat; Lee, Jung Yoon (SAGE Publications, 2004-08-01)
An analysis method for predicting the response of low-rise shear walls under both monotonic and cyclic loading is presented in this paper. The proposed analysis method is based on the softened truss model theory but utilizes newly proposed cyclic constitutive relationships for concrete and steel bars obtained from cyclic shear testing. The successfulness of the analysis method, when combined with new materials constitutive relationships, is checked against the test results of 33 low-rise shear walls reporte...
FINITE-ELEMENT ANALYSIS OF PRESTRESSED AND REINFORCED-CONCRETE STRUCTURES
ELMEZAINI, N; CITIPITIOGLU, E (American Society of Civil Engineers (ASCE), 1991-10-01)
A practical and powerful technique for the discrete representation of reinforcement in finite element analysis of prestressed and reinforced concrete structures is presented. Isoparametric quadratic and cubic finite elements with movable nodes are developed utilizing a correction technique for mapping distortion. Reinforcing bars and/or prestressing tendons are modeled independently of the concrete mesh. Perfect or no bond as well as any bond-slip model can easily be represented. The procedure is succes...
Fragility analysis of wide-beam infill-joist block RC frames
Donmez, Cemalettin; Karaarslan, Enes; Erberik, Murat Altuğ (2022-01-01)
Purpose: The purpose of the presented study is to develop fragility curves for the wide-beam infill-joist block reinforced concrete structures. Theory and Methods: Nonlinear time history analyses are performed for the set of selected ground motions. The performance levels are identified through pushover analysis and fragility curves are produced for ground motion parameters. Results: Fragility curves obtained for the wide-beam RC frames presents a different characteristic than the curves obtained for the co...
Citation Formats
S. Seçkiner, “Parametric analysis of inelastic interaction in frame-wall structural systems,” M.S. - Master of Science, Middle East Technical University, 2011.