Experimental investigation of waveform tip injection on the characteristics of the tip vortex

Download
2011
Ostovan, Yashar
This study investigates the effect of chordwisely modulated tip injection on the flow and turbulence characteristics of the tip vortex through experimental measurements downstream of a rectangular half-wing that has an aspect ratio of three. This injection technique involves spanwise jets at the tip that are issued from a series of holes along the chord line normal to the freestream flow direction. The injection mass flow rate from each hole is individually controlled using computer driven solenoid valves and therefore the flow injection geometrical pattern at the tip can be adjusted to any desired waveform shape, with any proper injection velocity. The measurements are performed in a blow-down wind tunnel using Constant Temperature Anemometry and Kiel probe traverses as well as Stereoscopic Particle Image Velocimetry. Current data show consistent trends with v previously observed effects of steady uniform tip injection such as the upward and outward motion of the vortex as well as increased levels of turbulence within the vortex core. The vortex size gets bigger with injection and the total pressure levels get reduced significantly near the vortex core. The injection pattern also seems to affect the size of the wing wake as well as the wake entrainment characteristics of the tip vortex. Depending on the injection waveform pattern and injection momentum coefficient the helicoidal shape of the tip vortex also seems to get affected.

Suggestions

AN IMPROVED 1D MODEL FOR LIQUID SLUGS TRAVELLING IN PIPELINES
Tijsseling, Arris S.; Hou, Qingzhi; Bozkuş, Zafer (2014-07-24)
An improved one-dimensional (1D) model - compared to previous work by the authors - is proposed which is able to predict the acceleration and shortening of a single liquid slug propagating in a straight pipe with a downstream bend. The model includes holdup at the slug's tail and flow separation at the bend. The obtained analytical and numerical results are validated against experimental data. The effects of the improvement and of holdup are examined in a parameter variation study.
Numerical simulation of non-reacting turbulent flows over a constant temperature solid surface in regression
Karaeren, Cenker; Albayrak, Kahraman; Department of Mechanical Engineering (2007)
In this study, an attempt is made to obtain convergent and stable solutions of the K-E turbulence model equations for non-reacting turbulent flows over an isothermal solid surface in regression. A physics based mathematical model is used to describe the flow and temperature field over the moving surface. The flow is assumed to be two-dimensional, unsteady, incompressible with boundary layer approximations. Parabolized form of the standard K-E equations is adopted to simulate turbulence in the flow. Regressi...
Implementation of turbulence models on 2d hybrid grids using an explicit/implicit multigrid algorithm
Yılmaz, Ali Emre; Tuncer, İsmail Hakkı; Department of Aerospace Engineering (2011)
In this thesis study, implementation, numerical stability and convergence rate issues of turbulence modeling are explored. For this purpose, a one equation turbulence model, Spalart-Allmaras, and a two-equation turbulence model, SST k-w, are adapted to an explicit, cell centered, finite volume method based, structured / hybrid multi grid flow solver, SENSE2D, developed at TUBITAK-SAGE. Governing equations for both the flow and the turbulence are solved in a loosely coupled manner, however, each set of equat...
Implementation and comparison of turbulence models on a flat plate problem using a Navier-Stokes solver
Genç, Balkan Ziya; Aksel, Mehmet Haluk; Department of Mechanical Engineering (2003)
For turbulent flow calculations, some of the well-known turbulence models in the literature are applied on a previously developed Navier-Stokes solver designed to handle laminar flows. A finite volume formulation, which is cell-based for inviscid terms and cell-vertex for viscous terms, is used for numerical discretization of the Navier-Stokes equations in conservative form. This formulation is combined with one-step, explicit time marching Lax-Wendroff numerical scheme that is second order accurate in spac...
An Improved One-Dimensional Model for Liquid Slugs Traveling in Pipelines
TIJSSELING, Arris S.; Hou, Qingzhi; Bozkuş, Zafer (2016-02-01)
An improved one-dimensional (1D) model-compared to previous work by the authors-is proposed, which is able to predict the acceleration and shortening of a single liquid slug propagating in a straight pipe with a downstream bend. The model includes holdup at the slug's tail and flow separation at the bend. The obtained analytical and numerical results are validated against experimental data. The effects of holdup, driving pressure and slug length are examined in a parameter variation study.
Citation Formats
Y. Ostovan, “Experimental investigation of waveform tip injection on the characteristics of the tip vortex,” M.S. - Master of Science, Middle East Technical University, 2011.