Numerical study of Rayleigh Bènard thermal convection via solenoidal bases

Download
2011
Yıldırım, Cihan
Numerical study of transition in the Rayleigh-B\'enard problem of thermal convection between rigid plates heated from below under the influence of gravity with and without rotation is presented. The first numerical approach uses spectral element method with Fourier expansion for horizontal extent and Legendre polynomal for vertical extent for the purpose of generating a database for the subsequent analysis by using Karhunen-Lo\'eve (KL) decomposition. KL decompositions is a statistical tool to decompose the dynamics underlying a database representing a physical phenomena to its basic components in the form of an orthogonal KL basis. The KL basis satisfies all the spatial constraints such as the boundary conditions and the solenoidal (divergence-free) character of the underlying flow field as much as carried by the flow database. The optimally representative character of the orthogonal basis is used to investigate the convective flow for different parameters, such as Rayleigh and Prandtl numbers. The second numerical approach uses divergence free basis functions that by construction satisfy the continuity equation and the boundary conditions in an expansion of the velocity flow field. The expansion bases for the thermal field are constructed to satisfy the boundary conditions. Both bases are based on the Legendre polynomials in the vertical direction in order to simplify the Galerkin projection procedure, while Fourier representation is used in the horizontal directions due to the horizontal extent of the computational domain taken as periodic. Dual bases are employed to reduce the governing Boussinesq equations to a dynamical system for the time dependent expansion coefficients. The dual bases are selected so that the pressure term is eliminated in the projection procedure. The resulting dynamical system is used to study the transitional regimes numerically. The main difference between the two approaches is the accuracy with which the solenoidal character of the flow is satisfied. The first approach needs a numerically or experimentally generated database for the generation of the divergence-free KL basis. The degree of the accuracy for the KL basis in satisfying the solenoidal character of the flow is limited to that of the database and in turn to the numerical technique used. This is a major challenge in most numerical simulation techniques for incompressible flow in literature. It is also dependent on the parameter values at which the underlying flow field is generated. However the second approach is parameter independent and it is based on analytically solenoidal basis that produces an almost exactly divergence-free flow field. This level of accuracy is especially important for the transition studies that explores the regions sensitive to parameter and flow perturbations.

Suggestions

Numerical simulations of thermal convection under the influence of an inclined magnetic field by using solenoidal bases
Yarimpabuc, D.; Tarman, Işık Hakan; Yildirim, C. (2014-11-01)
The effect of an inclined homogeneous magnetic field on thermal convection between rigid plates heated from below under the influence of gravity is numerically simulated in a computational domain with periodic horizontal extent. The numerical technique is based on solenoidal (divergence-free) basis functions satisfying the boundary conditions for both the velocity and the induced magnetic field. Thus, the divergence-free conditions for both velocity and magnetic field are satisfied exactly. The expansion ba...
Numerical investigation of unsteady natural convection from a heated cylinder in a square enclosure
Bozkaya, Canan (null; 2015-07-06)
A numerical study of two dimensional, unsteady, incompressible natural convection flow and heat transfer is performed in a square enclosure involving a heated circular cylinder. The natural convection is driven by a temperature difference between the cold outer square and hot inner circular cylinders. The temperature of the inner cylinder varies sinusoidally with time about a fixed mean temperature while the outer enclosure is kept at a lower constant temperature. The problem under consideration, which is g...
Numerical simulation of thermal convection under the influence of a magnetic field by using solenoidal bases
Yarımpabuç, Durmuş; Tarman, Işık Hakan; Department of Engineering Sciences (2011)
The effect of an imposed magnetic field on the thermal convection between rigid plates heated from below under the influence of gravity is numerically simulated in a computational domain with periodic horizontal extent. The numerical technique is based on solenoidal basis functions satisfying the boundary conditions for both velocity and induced magnetic field. The expansion bases for the thermal field are also constructed to satisfy the boundary conditions. The governing partial differential equations are ...
A Spectral Solenoidal-Galerkin Method for Rotating Thermal Convection between Rigid Plates
Yıldırım, Cihan; Yarımpabuç, Durmuş; Tarman, Hakan I. (Hindawi Limited, 2013)
The problem of thermal convection between rotating rigid plates under the influence of gravity is treated numerically. The approach uses solenoidal basis functions and their duals which are divergence free. The representation in terms of the solenoidal bases provides ease in the implementation by a reduction in the number of dependent variables and equations. A Galerkin procedure onto the dual solenoidal bases is utilized in order to reduce the governing system of partial differential equations to a system ...
Numerical Simulation of Reciprocating Flow Forced Convection in Two-Dimensional Channels
Sert, Cüneyt (ASME International, 2003-5-20)
<jats:p>Numerical simulations of laminar, forced convection heat transfer for reciprocating, two-dimensional channel flows are performed as a function of the penetration length, Womersley (α) and Prandtl (Pr) numbers. The numerical algorithm is based on a spectral element formulation, which enables high-order spatial resolution with exponential decay of discretization errors, and second-order time-accuracy. Uniform heat flux and constant temperature boundary conditions are imposed on certain regions of the ...
Citation Formats
C. Yıldırım, “Numerical study of Rayleigh Bènard thermal convection via solenoidal bases,” Ph.D. - Doctoral Program, Middle East Technical University, 2011.