Synthesis of poly (dl-lactic-co-glycolic acid) coated magnetic nanoparticles for anti-cancer drug delivery

Download
2012
Tansık, Gülistan
One of the main problems of current cancer chemotherapy is the lack of selectivity of anti-cancer drugs to tumor cells which leads to systemic toxicity and adverse side effects. In order to overcome these limitations, researches on controlled drug delivery systems have gained much attention. Nanoscale based drug delivery systems provide tumor targeting. Among many types of nanocarriers, superparamagnetic nanoparticles with their biocompatible polymer coatings can be targeted to an intented site by an external magnetic field. Thus, the drug can be carried to the targeted site safely. The aim of this study is to prepare poly(dl-lactic-co-glycolic acid) (PLGA) coated magnetic nanoparticles and load anti-cancer drug, doxorubicin to them. For this purpose, magnetite (Fe3O4) iron oxide nanoparticles were synthesized as a magnetic core material (MNP) and then coated with oleic acid. Oleic acid coated MNP (OA-MNP) was encapsulated into PLGA. Effects of different OA-MNP/PLGA ratios on magnetite entrapment efficiency were investigated. Doxorubicin loaded magnetic polymeric nanoparticles (DOX-PLGA-MNP) were prepared. After the characterization of prepared nanoparticles, their cytotoxic effects on MCF-7 cell line were studied. PLGA coated magnetic nanoparticles (PLGA-MNP) had a proper size and superparamagnetic character. The highest magnetite entrapment efficiency of PLGA-MNP was estimated as 63 % at 1:8 ratio. Cytotoxicity studies of PLGA-MNP did not indicate any notable cell death between the concentration ranges of 2 and 250 μg ml-1. It was observed that DOX-PLGA-MNP showed significant cytotoxicity on MCF-7 cells compared to PLGA-MNP. The results showed that prepared nanoparticles have desired size and superparamagnetic characteristics without serious toxic effects on cells. These nanoparticles may be suitable for targeted drug delivery applications. The findings obtained from drug studies may contribute to further work.

Suggestions

Tailoring magnetic PLGA nanoparticles suitable for doxorubicin delivery
Tansik, Gulistan; YAKAR, ARZU; Gündüz, Ufuk (2013-12-07)
One of the main problems of current cancer chemotherapy is the lack of selectivity of anti-cancer drugs to tumor cells, which leads to systemic toxicity and adverse side effects. In order to overcome these limitations, researches on controlled drug delivery systems have gained much attention. Nanoscale-based drug delivery systems provide tumor targeting. Among many types of nanocarriers, superparamagnetic nanoparticles with their biocompatible polymer coatings can be targeted to an intented site by an exter...
Reversal of breast cancer resistance protein mediated multidrug resistance in MCF7 breast adenocarcinoma cell line
Urfalı, Çağrı; Gündüz, Ufuk; Department of Biology (2011)
Resistance to various chemotherapeutic agents is a major problem in success of cancer chemotherapy. One of the primary reasons of development of multidrug resistance (MDR) is the overexpression of ATP binding cassette (ABC) transporter proteins. Breast cancer resistance protein (BCRP) belongs to ABC transporter family and encoded by ABCG2 gene. BCRP is mainly expressed in MDR1 (P-glycoprotein) lacking breast cancer cells. Overexpression of BCRP leads to efflux of chemotherapeutic agents at higher rates, the...
İdarubisin yüklü manyetik nanoparçacıkların sentezlenmesi ve MCF-7 meme kanseri hücre hattına uygulanması
Gündüz, Güngör; Yakar, Arzu; Gündüz, Ufuk(2012)
Conventional cancer chemotherapies cannot differentiate between healthy and cancer cells, and lead to severe side effects and systemic toxicity. In the last decades, different kinds of controlled drug delivery systems have been developed to overcome these shortcomings of chemotherapeutics. These studies aim targeted drug delivery to tumor side at the right time. Magnetic nanoparticles (MNP) are potentially important in cancer treatment since they can be targeted to tumor site by an externally applied magnet...
The role of 15-LOX-1 in resistance to chemotherapeutics
Kazan, Hasan Hüseyin; Gündüz, Ufuk; Department of Biology (2020)
Chemotherapy is one of the best options to treat cancer. However, drug resistance can limit the efficacy of chemotherapeutics. There have been several reasons for the cancer drug resistance including the export of the drug from cells, inactivation of drugs by enzymatic processes, mutations that limit the binding of the drugs to the target proteins, resistance to cell death mechanism by cellular manipulations and reorganization of the cell membrane. 15-Lipoxygenase-1 (15-LOX-1) is a member of the lipoxygenas...
Investigaton of chemopreventive properties of Urtica Dioica L., in MCF-7 and MDA231 breast cancer cell lines
Güler, Elif; İşcan, Mesude; Department of Biology (2011)
Cancer is a major health problem in developing world with mostly unsufficient treatment. Cancer prevention through dietary modification appears to be a practical and cost effective possibility. The aim of present study is to investigate the chemical components of “Urtica diocia,L (U. diocia) grown in Turkey” and the possible protective potential of its aqueous extract against breast cancer cell lines. U. diocia was extracted by maceration method which was performed for 6,12, 24, and 36 hours, at 50°C, 37°C,...
Citation Formats
G. Tansık, “Synthesis of poly (dl-lactic-co-glycolic acid) coated magnetic nanoparticles for anti-cancer drug delivery,” M.S. - Master of Science, Middle East Technical University, 2012.