Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Matrix fracture interaction in sandstone rocks during carbon dioxide, methane and nitrogen injection
Date
2012
Author
Bülbül, Sevtaç
Metadata
Show full item record
Item Usage Stats
206
views
0
downloads
Cite This
The aim of the study is to investigate matrix-fracture interaction, gas oil gravity drainage (GOGD) and diffusion mechanisms with CO2, N2 and CH4 gas injection in a fractured system. Effects of injected gas type, initial gas saturation and diffusion coefficient on oil recovery are studied by an experimental and simulation work. In the experimental study, Berea sandstone cores are placed in a core holder and the space created around the core is considered as a surrounding fracture. System is kept at a pressure of 250 psi by CO2, N2 and CH4 gases and at a reservoir temperature of 70 C. Experiments with cores having similar initial saturations resulted in the highest n-decane recovery in CO2 experiment followed by CH4 and N2. The highest solubility of CO2 in n-decane and density difference between CO2 and CO2-n-decane mixture are considered as the reason of results. CO2 injection tests with n-decane and brine saturated core with and without initial gas saturation indicate that availability of initial gas saturation in matrix increased recovery. A simulation study is continued using CMG (Computer Modeling Group Ltd.) WinProp (Microsoft Windows™ based Phase-Behavior and Fluid Property Program) and GEM (Generalized Equation-of-State Model Compositional Reservoir Simulator). Simulation results of CO2 experiment with initial gas show that dominant effect of GOGD decreases and diffusion becomes more effective at final production stages. Simulation study indicates an immediate, sharp decrease in oil saturation in matrix. Oil in matrix migrates into fractures and moves downward as a result of GOGD with gas injection.
Subject Keywords
Petroleum
,
Natural gas
,
Sandstone.
,
Fracture mechanics.
URI
http://etd.lib.metu.edu.tr/upload/12614380/index.pdf
https://hdl.handle.net/11511/21534
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Hydrate formation conditions of methane hydrogen sulfide mixtures
Bülbül, Sevtaç; Mehmetoğlu, Mustafa Tanju; Department of Petroleum and Natural Gas Engineering (2007)
The objective of this study is to determine hydrate formation conditions of methane- hydrogen sulfide mixtures. During the study, an experimental work is carried out by using a system that contains a high-pressure hydrate formation cell and pressure-temperature data is recorded in each experiment. Different H2S concentrations and both brine and distilled water are used in the experiments and the Black Sea conditions, which are suitable for methane-hydrogen sulfide hydrate formation are examined. Considering...
Determination of hydrate formation conditions of drilling fluids
Kupeyeva, Aliya; Parlaktuna, Mahmut; Department of Petroleum and Natural Gas Engineering (2007)
The objective of this study is to determine hydrate formation conditions of a multicomponent polymer based drilling fluid. During the study, experimental work is carried out by using a system that contains a high-pressure hydrate formation cell and pressure-temperature data is recorded in each experiment. Different concentrations of four components of drilling fluid, namely potassium chloride (KCl), partially hydrolyzed polyacrylicamide (PHPA), xanthan gum (XCD) and polyalkylene glycol (poly.glycol) were us...
Prediction of Non-Darcy flow effects on fluid flow through porous media based on field data
Alp, Ersen; Akın, Serhat; Department of Chemical Engineering (2012)
The objective of this dissertation is to investigate the non-Darcy flow effects on field base data by considering gas viscosity, gas deviation factor and gas density as variables. To achieve it, different correlations from the literature and field data have been combined to Sawyer-Brown Method, thus a contribution has been achieved. Production history of selected gas field has been implemented to a numerical simulator. To find out non-Darcy effects quantitatively, Darcy flow conditions have also been run in...
Experimental and numerical investigation of formation damage caused by drilling fluids
İşcan, Abdullah Gürkan; Kök, Mustafa Verşan; Department of Petroleum and Natural Gas Engineering (2006)
In this thesis, permeability impairment caused by drilling fluids and subsequent cleaning and permeability enhancement by back-flow were investigated by means of experimental and simulation studies. Permeability damage caused by three different drilling fluids was measured experimentally by core tests as a function of the filtration pressure and analyzed using a simulator describing the fines migration and retention in porous media. The pore throat plugging criteria for the three drilling fluids were determ...
Adsorption calorimetry in supported catalyst characterization : adsorption structure sensitivity on pt(y-Al2o3
Üner, Murat; Üner, Deniz; Department of Chemical Engineering (2004)
In this study, the structure sensitivity of hydrogen, oxygen and carbon monoxide adsorption was investigated by changing the metal particle size of Pt/Al2O3 catalysts. 2 % Pt/Al2O3 catalysts were prepared by incipient wetness method; the particle size of the catalysts was manipulated by calcining at different temperatures. The dispersion values for the catalysts calcined in air at 683K, 773K and 823K were measured as 0.62, 0.20 and 0.03 respectively. The differential heats of adsorption of hydrogen, carbon ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Bülbül, “Matrix fracture interaction in sandstone rocks during carbon dioxide, methane and nitrogen injection,” Ph.D. - Doctoral Program, Middle East Technical University, 2012.