Feature detection and matching towards augmented reality applications on mobile devices

Download
2012
Gündoğdu, Erhan
Local feature detection and its applications in different problems are quite popular in vision research. In order to analyze a scene, its invariant features, which are distinguishable in many views of this scene, are used in pose estimation, object detection and augmented reality. However, required performance metrics might change according to the application type; in general, the main metrics are accepted as accuracy and computational complexity. The contributions in this thesis provide improving these metrics and can be divided into three parts, as local feature detection, local feature description and description matching in different views of the same scene. In this thesis an efficient feature detection algorithm with sufficient repeatability performance is proposed. This detection method is convenient for real-time applications. For local description, a novel local binary pattern outperforming state-of-the-art binary pattern is proposed. As a final task, a fuzzy decision tree method is presented for approximate nearest neighbor search. In all parts of the system, computational efficiency is considered and the algorithms are designed according to limited processing time. Finally, an overall system capable of matching different views of the same scene has been proposed and executed in a mobile platform. The results are quite promising such that the presented system can be used in real-time applications, such as augmented reality, object retrieval, object tracking and pose estimation.