Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Heat exchanger network synthesis with detailed design : reformulation as a shortest path problem by temperature discretization
Download
index.pdf
Date
2012
Author
Kirkizoğlu, Işıl
Metadata
Show full item record
Item Usage Stats
132
views
88
downloads
Cite This
This study presents an optimization approach to heat exchanger network synthesis (HENS). HENs are widely used in industry and bring several fluid streams into their desired temperatures by using available heat in the process for efficient usage of energy. Our aim is to provide a network design coupled with a detailed equipment design for heat exchangers. The suggested approach involves discretization of temperatures based on heat load equalities and reformulation as a shortest-path problem, rather than dealing with a nonlinear model and a previously structured HEN, which are common methods in the literature. We generate a shortest path network whose every node corresponds to a heat exchanger alternative and each path represents a HEN design alternative. A mixed-integer nonlinear programming model is solved to design each exchanger alternative in detail, considering all thermo-physical and transport properties of streams at their temperatures and pressures. Our approach has modeling flexibility and successfully finds the required number of heat exchangers and their connections. In addition, one can control the solution quality by deciding on the heat load steps between stream inlet and outlets. Several HEN examples from the literature are solved to assess the performance of our approach and comparable results are obtained.
Subject Keywords
Heat exchangers
,
Heat exchangers
URI
http://etd.lib.metu.edu.tr/upload/12614877/index.pdf
https://hdl.handle.net/11511/21800
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Modeling of heat and mass transfer in microwave-infrared heating of zucchini
Yazıcıoğlu, Nalan; Şümnü, Servet Gülüm; Şahin, Serpil; Department of Food Engineering (2016)
The main objective of this study is to develop a finite element model to predict the variation of temperature and moisture content of zucchini during microwave-infrared heating. There is no information in literature about heating of zucchini by using this method. Heat and mass transfer in zucchini heated in microwave and infrared combination oven were modelled by Finite Element method. Microwave power was predicted by using the exact form of Lambert Law and calculating the electric field distribution by Max...
Site Specific Relationship for Strain Dependent Shear Modulus and Damping Using In Situ V S and High Strain Cyclic Test Results
Zehtab, Kaveh Hassan; Yılmaz, Mustafa Tolga (2016-08-18)
This study suggests a practical method for estimating site-specific strain dependent shear modulus and damping. The method uses in-situ shear wave velocity measurements and commercial cyclic laboratory tests on higher strains (i.e., 0.5% to 1%) in which the effect of disturbance is less significant. Shear modulus calculated using in-situ shear wave velocity and at higher cyclic shear strain, is used for building a hyperbolic relationship for shear stress and strain. Modified Masing's rule and the experiment...
Interval priority weight generation from interval comparison matrices in analytic hierarchy process
Öztürk, Ufuk; Karasakal, Esra; Department of Industrial Engineering (2009)
In this study, for the well-known Analytic Hierarchy Process (AHP) method a new approach to interval priority weight generation from interval comparison matrix is proposed. This method can be used for both inconsistent and consistent matrices. Also for the problems having more than two hierarchical levels a synthesizing heuristic is presented. The performances of the methods, interval generation and synthesizing, are compared with the methods that are already available in the literature on randomly generate...
Hybrid ranking approaches based on data envelopment analysis and outranking relations
Eryılmaz, Utkan; Karasakal, Esra; Department of Industrial Engineering (2006)
In this study two different hybrid ranking approaches based on data envelopment analysis and outranking relations for ranking alternatives are proposed. Outranking relations are widely used in Multicriteria Decision Making (MCDM) for ranking the alternatives and appropriate in situations when we have limited information on the preference structure of the decision maker. Yet to apply these methods DM should provide exact values for method parameters (weights, thresholds etc.) as well as basic information suc...
Optimal pricing and production decisions in reusable container systems
Atamer, Büşra; Bakal, İsmail Serdar; Department of Industrial Engineering (2010)
In this study, we focus on pricing and production decisions in reusable container systems with stochastic demand. We consider a producer that sells a single product to the customers in reusable containers with two supply options: (i) brand-new containers, (ii) returned containers from customers. Customers purchasing the products may return the containers to the producer to receive a deposit price. The return quantity depends on both customer demand and the deposit price determined by the producer. Hence, th...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
I. Kirkizoğlu, “Heat exchanger network synthesis with detailed design : reformulation as a shortest path problem by temperature discretization,” M.S. - Master of Science, Middle East Technical University, 2012.