Detached Eddy simulation of turbulent flow on 2D hybrid grids

Download
2012
Yırtıcı, Özcan
In this thesis study, Detached Eddy Simulation turbulence model is studied in two dimension mainly for flow over single element airfoils in high Reynolds numbers to gain experience with model before applying it to a three dimensional simulations. For this aim, Spalart-Allmaras and standard DES ,DES97, turbulence models are implemented to parallel, viscous, hybrid grid flow solver. The flow solver ,Set2d, is written in FORTRAN language. The Navier-Stokes equations are discretized by first order accurately cell centered finite volume method and solved explicitly by using Runge-Kutta dual time integration technique. Inviscid fluxes are computed using Roe flux difference splitting method. The numerical simulations are performed in parallel environment using domain decomposition and PVM library routines for inter-process communications. To take into account the effect of unsteadyness after the convergence is ensured by local time stepping technique for four order magnitude drop in density residual, global time stepping is applied for 20000 iterations. The solution algorithm is validated aganist the numerical and experimental studies for single element airfoils in subsonic and transonic flows. It is seen that Spalart-Allmaras and DES97 turbulence models give the same results in the non-seperated flows. Grey area is investigated by changing $C_{DES}$ coefficient. Modeled Stress Depletion which cause reduction of eddy viscosity is observed.

Suggestions

Implementation and assessment of Hellsten explicit algebraic Reynolds stress k-omega model
İlhan, Umut; Aksel, Mehmet Haluk; Baran, Özgür Uğraş; Department of Mechanical Engineering (2022-9)
Turbulence modeling is one of the most challenging aspects of Computational Fluid Dynamics (CFD). The choice of turbulence model affects the accuracy and computational cost of the CFD analyses. Linear Eddy Viscosity Models (LEVMs) are commonly used in industrial CFD applications due to their low computational cost and ease of convergence. However, they often fail to model complex flow structures. More advanced models, such as Reynolds Stress Transport Models (RSTMs), have better performance for capturing th...
Implementation and comparison of turbulence models on a flat plate problem using a Navier-Stokes solver
Genç, Balkan Ziya; Aksel, Mehmet Haluk; Department of Mechanical Engineering (2003)
For turbulent flow calculations, some of the well-known turbulence models in the literature are applied on a previously developed Navier-Stokes solver designed to handle laminar flows. A finite volume formulation, which is cell-based for inviscid terms and cell-vertex for viscous terms, is used for numerical discretization of the Navier-Stokes equations in conservative form. This formulation is combined with one-step, explicit time marching Lax-Wendroff numerical scheme that is second order accurate in spac...
Experimental investigation of waveform tip injection on the characteristics of the tip vortex
Ostovan, Yashar; Uzol, Oğuz; Department of Aerospace Engineering (2011)
This study investigates the effect of chordwisely modulated tip injection on the flow and turbulence characteristics of the tip vortex through experimental measurements downstream of a rectangular half-wing that has an aspect ratio of three. This injection technique involves spanwise jets at the tip that are issued from a series of holes along the chord line normal to the freestream flow direction. The injection mass flow rate from each hole is individually controlled using computer driven solenoid valves a...
AN IMPROVED 1D MODEL FOR LIQUID SLUGS TRAVELLING IN PIPELINES
Tijsseling, Arris S.; Hou, Qingzhi; Bozkuş, Zafer (2014-07-24)
An improved one-dimensional (1D) model - compared to previous work by the authors - is proposed which is able to predict the acceleration and shortening of a single liquid slug propagating in a straight pipe with a downstream bend. The model includes holdup at the slug's tail and flow separation at the bend. The obtained analytical and numerical results are validated against experimental data. The effects of the improvement and of holdup are examined in a parameter variation study.
Direct numerical simulation of pipe flow using a solenoidal spectral method
Tugluk, Ozan; Tarman, Işık Hakan (2012-05-01)
In this study, a numerical method based on solenoidal basis functions, for the simulation of incompressible flow through a circular-cylindrical pipe, is presented. The solenoidal bases utilized in the study are formulated using the Legendre polynomials. Legendre polynomials are favorable, both for the form of the basis functions and for the inner product integrals arising from the Galerkin-type projection used. The projection is performed onto the dual solenoidal bases, eliminating the pressure variable, si...
Citation Formats
Ö. Yırtıcı, “Detached Eddy simulation of turbulent flow on 2D hybrid grids,” M.S. - Master of Science, Middle East Technical University, 2012.