Numerical Simulation of a Flapping Micro Aerial Vehicle Through Wing Deformation Capture

2018-8
Tay, W. B.
de Baar, J. H. S.
Perçin, Mustafa
Deng, S.
van Oudheusden, B. W.
Three-dimensional numerical simulations of a four-wing flapping micro aerial vehicle (FMAV) with actual experimentally captured wing membrane kinematics have been performed using an immersed boundary method Navier-Stokes finite volume solver. To successfully simulate the clap and fling motion involving the wing intersection, the numerical solver has been specifically modified to use a newly improved interpolation template searching algorithm to prevent divergence. Reasonable agreement was found between the numerical and experimental results, with the first and second force peaks from the experimental results well captured by the simulations, which was not possible in the past. Moreover, a V-shaped linked vortex was observed, which was similar to the vortical structures found in other experiments and simulations. A wing drag analysis showed that the drag magnitude of the clap and fling configuration was about 2.5 times that of the single-wing configuration. Visualizations of the flowfields through pressure contours and vortical isosurfaces led to a better understanding of the underlying flapping-wing aerodynamics. The ability to accurately simulate the FMAV with flexible wings opened up many opportunities for further FMAV design-related problems.
AIAA Journal

Suggestions

Numerical Simulation of a Flexible X-Wing Flapping-Wing Micro Air Vehicle
Deng, S.; Perçin, Mustafa; van Oudheusden, B. W.; Bijl, H.; Remes, B.; Xiao, T. (2017-07-01)
Numerical simulations were performed to investigate the flowfield around a flexible flapping-wing micro air vehicle using an in-house-developed computational fluid dynamics solver. To include the dynamics of the flexible wings and its impact on the aerodynamic behavior of the micro air vehicle, the wing-deformation pattern during flapping was experimentally determined by a stereovision measurement. These data were subsequently interpolated to be employed as prescribed flapping kinematics in the numerical fl...
Numerical and Experimental Investigation of Newtonian Flow around a Confined Square Cylinder
Tezel, Guler Bengusu; YAPICI, Kerim; Uludağ, Yusuf (Periodica Polytechnica Budapest University of Technology and Economics, 2019-01-01)
The confined flow of a Newtonian fluid around a square cylinder mounted in a rectangular channel was investigated both numerically and experimentally. Ratio between the pipe and channel height, the blockage ratio, is kept constant at 1/4. The flow variables including streamlines, vorticity and drag coefficients were calculated at 0 <= Re <= 50 using finite volume method. The velocity terms in the momentum equations are approximated by a higher-order and bounded scheme of Convergent and Universally Bounded I...
Numerical Simulation of Rarefied Laminar Flow past a Circular Cylinder
Çelenligil, Mehmet Cevdet (2014-07-18)
Numerical simulations have been obtained for two-dimensional laminar flows past a circular cylinder in the transitional regime. Computations are performed using the direct simulation Monte Carlo method for Knudsen numbers of 0.02 and 0.2 and Mach numbers of 0.102 and 0.4. For these conditions, Reynolds number ranges from 0.626 to 24.63 and the flows are steady. Results show that separation occurs in the wake region for the flow with Mach number of 0.4 and Knudsen number of 0.02, but for the other eases flow...
Numerical Solution and Stability Analysis of Transient MHD Duct Flow
Tezer, Münevver (2018-11-01)
This paper simulates the 2D transient magnetohydrodynamic (MHD) flow in a rectangular duct in terms of the velocity of the fluid and the induced magnetic field by using the radial basis function (RBF) approximation. The inhomogeneities in the Poisson’s type MHD equations are approximated using the polynomial functions (1+r) and the particular solution is found satisfying both the equations and the boundary conditions (no-slip and insulated walls). The Euler scheme is used for advancing the solution to ste...
Numerical Analysis of Viscoelastic Fluids in Steady Pressure-Driven Channel Flow
YAPICI, KERİM; Karasözen, Bülent; Uludağ, Yusuf (2012-05-01)
The developing steady flow of Oldroyd-B and Phan-Thien-Tanner (PTT) fluids through a two-dimensional rectangular channel is investigated computationally by means of a finite volume technique incorporating uniform collocated grids. A second-order central difference scheme is employed to handle convective terms in the momentum equation, while viscoelastic stresses are approximated by a third-order accurate quadratic upstream interpolation for convective kinematics (QUICK) scheme. Momentum interpolation method...
Citation Formats
W. B. Tay, J. H. S. de Baar, M. Perçin, S. Deng, and B. W. van Oudheusden, “Numerical Simulation of a Flapping Micro Aerial Vehicle Through Wing Deformation Capture,” AIAA Journal, pp. 3257–3270, 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/28200.