Numerical Simulation of a Flapping Micro Aerial Vehicle Through Wing Deformation Capture

Tay, W. B.
de Baar, J. H. S.
Perçin, Mustafa
Deng, S.
van Oudheusden, B. W.
Three-dimensional numerical simulations of a four-wing flapping micro aerial vehicle (FMAV) with actual experimentally captured wing membrane kinematics have been performed using an immersed boundary method Navier-Stokes finite volume solver. To successfully simulate the clap and fling motion involving the wing intersection, the numerical solver has been specifically modified to use a newly improved interpolation template searching algorithm to prevent divergence. Reasonable agreement was found between the numerical and experimental results, with the first and second force peaks from the experimental results well captured by the simulations, which was not possible in the past. Moreover, a V-shaped linked vortex was observed, which was similar to the vortical structures found in other experiments and simulations. A wing drag analysis showed that the drag magnitude of the clap and fling configuration was about 2.5 times that of the single-wing configuration. Visualizations of the flowfields through pressure contours and vortical isosurfaces led to a better understanding of the underlying flapping-wing aerodynamics. The ability to accurately simulate the FMAV with flexible wings opened up many opportunities for further FMAV design-related problems.
AIAA Journal


Numerical and Experimental Investigation of Newtonian Flow around a Confined Square Cylinder
Tezel, Guler Bengusu; YAPICI, Kerim; Uludağ, Yusuf (Periodica Polytechnica Budapest University of Technology and Economics, 2019-01-01)
The confined flow of a Newtonian fluid around a square cylinder mounted in a rectangular channel was investigated both numerically and experimentally. Ratio between the pipe and channel height, the blockage ratio, is kept constant at 1/4. The flow variables including streamlines, vorticity and drag coefficients were calculated at 0 <= Re <= 50 using finite volume method. The velocity terms in the momentum equations are approximated by a higher-order and bounded scheme of Convergent and Universally Bounded I...
Numerical Analysis of Viscoelastic Fluids in Steady Pressure-Driven Channel Flow
YAPICI, KERİM; Karasözen, Bülent; Uludağ, Yusuf (2012-05-01)
The developing steady flow of Oldroyd-B and Phan-Thien-Tanner (PTT) fluids through a two-dimensional rectangular channel is investigated computationally by means of a finite volume technique incorporating uniform collocated grids. A second-order central difference scheme is employed to handle convective terms in the momentum equation, while viscoelastic stresses are approximated by a third-order accurate quadratic upstream interpolation for convective kinematics (QUICK) scheme. Momentum interpolation method...
Numerical simulation of lateral jets in supersonic crossflow of missiles using computational fluid dynamics
Dağlı, Efe Can; Aksel, M. Haluk.; Department of Mechanical Engineering (2019)
In this thesis, numerical simulation method for modelling lateral jet in supersonic crossflow is presented. Lateral jet control provides high maneuverability to the missile at difficult flow conditions. Besides, jet in a crossflow case has a highly complicated flow domain which should be examined using numerical or experimental methods. In this study, numerical methods are used. The thesis consists of two main sections. In the first section, a validation study is conducted for numerical simulation method us...
3 D time accurate CFD simulations of wind turbine rotor flow fields
Tonkal, Ozan Çağrı; Pehlivan, Sercan; Sezer Uzol, Nilay; İşler, Veysi (American Institute of Aeronautics and Astronautics Inc.(AIAA); 2006-01-12)
This paper presents the results of three-dimensional and time-accurate Computational Fluid Dynamics (CFD) simulations of the flow field around the National Renewable Energy Laboratory (NREL) Phase VI horizontal axis wind turbine rotor. The 3-D, unsteady, parallel, finite volume flow solver, PUMA2, is used for the simulations. The solutions are obtained using unstructured moving grids rotating with the turbine blades. Three different flow cases with different wind speeds and wind yaw angles are investigated:...
Numerical Solution of Multi-scale Electromagnetic Boundary Value Problems by Utilizing Transformation-Based Metamaterials
Ozgun, Ozlem; Kuzuoğlu, Mustafa (2011-06-23)
We present numerical solution techniques for efficiently handling multi-scale electromagnetic boundary value problems having fine geometrical details or features, by utilizing spatial coordinate transformations. The principle idea is to modify the computational domain of the finite methods (such as the finite element or finite difference methods) by suitably placing anisotropic metamaterial structures whose material parameters are obtained by coordinate transformations, and hence, to devise easier and effic...
Citation Formats
W. B. Tay, J. H. S. de Baar, M. Perçin, S. Deng, and B. W. van Oudheusden, “Numerical Simulation of a Flapping Micro Aerial Vehicle Through Wing Deformation Capture,” AIAA Journal, pp. 3257–3270, 2018, Accessed: 00, 2020. [Online]. Available: