Aerodynamic parameter estimation of a missile in closed loop control and validation with flight data

Download
2012
Aydın, Güneş
Aerodynamic parameter estimation from closed loop data has been developed as another research area since control and stability augmentation systems have been mandatory for aircrafts. This thesis focuses on aerodynamic parameter estimation of an air to ground missile from closed loop data using separate surface excitations. A design procedure is proposed for designing separate surface excitations. The effect of excitations signals to the system is also analyzed by examining autopilot disturbance rejection performance. Aerodynamic parameters are estimated using two different estimation techniques which are ordinary least squares and complex linear regression. The results are compared with each other and with the aerodynamic database. An application of the studied techniques to a real system is also given to validate that they are directly applicable to real life.

Suggestions

Aerodynamic parameter estimation using flight test data
Kutluay, Ümit; Platin, Bülent Emre; Mahmutyazıcıoğlu, Gökmen; Department of Mechanical Engineering (2011)
This doctoral study aims to develop a methodology for use in determining aerodynamic models and parameters from actual flight test data for different types of autonomous flight vehicles. The stepwise regression method and equation error method are utilized for the aerodynamic model identification and parameter estimation. A closed loop aerodynamic parameter estimation approach is also applied in this study which can be used to fine tune the model parameters. Genetic algorithm is used as the optimization ker...
Experimental investigation of the effects of tip-injection on the aerodynamic loads and wake characteristics of a model horizontal axis wind turbine rotor
Abdulrahim, Anas; Uzol, Oğuz; Department of Aerospace Engineering (2014)
In this study, tip injection is implemented on a model Horizontal Axis Wind Turbine (HAWT) rotor to investigate the power and thrust coefficient variations as well as the wake characteristics. The model wind turbine has a 0.95 m diameter 3-bladed rotor with non-linearly twisted and tapered blades that has NREL S826 profile. The nacelle, hub and the blades are specifically designed to allow pressurized air to pass through and get injected from the tips while the rotor is rotating. The experiments are perform...
Aeroservoelastic Modelling and Analysis of a Missile Control Surface with a Nonlinear Electromechanical Actuator
Mehmet Ozan, Nalcı; Kayran, Altan (null; 2014-06-16)
In this study, aeroservoelastic modeling and analysis of a missile control surface which is operated and controlled by a power limited, nonlinear electromechanical actuator is performed. Linear models of the control fin structure and aerodynamics together with the nonlinear servo-actuation system are built and integrated. The resulting aeroservoelastic system is analyzed both in time and frequency domain. Structural model of the control fin is based on the finite element model of the fin. Aerodynamic model ...
Flight test maneuver design and aerodynamic parameter estimation for single use autonomous air vehicles
Vefa Yavuzturk, N.; Topbas, Eren; Yazıcıoğlu, Yiğit (null; 2017-01-01)
In this paper, a maneuver design and aerodynamic parameter estimation procedure is carried out for single use autonomous gliding air vehicles where allowable flight testing time is limited. At first, using the priori aerodynamics of a gliding vehicle, an aerodynamic model has been built and six degree of freedom simulation tool is generated. This priori aerodynamic knowledge is used to design a multi-sine input to excite the system at predetermined flight conditions during flight test. Afterwards, using the...
Development and implementation of novel flow control techniques for nonslender delta wings
Çelik, Alper; Yavuz, Mehmet Metin; Department of Mechanical Engineering (2017)
Understanding and controlling the physical phenomenon behind the aerodynamics of low to moderate swept delta wings has been a challenge for researchers during the last few decades, which is stimulated by their widespread use in unmanned combat air vehicles (UCAVs) and micro air vehicles (MAVs). Although delta wings are capable of generating high lift and stable flight performance at high angle of attack, the problems related to lack of conventional flow control surfaces compel the researchers to explore new...
Citation Formats
G. Aydın, “Aerodynamic parameter estimation of a missile in closed loop control and validation with flight data,” M.S. - Master of Science, Middle East Technical University, 2012.