Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Production and characterization of CaNi₅-xMx compounds for metal hydride batteries
Download
index.pdf
Date
2012
Author
Muğan, Orkun
Metadata
Show full item record
Item Usage Stats
215
views
110
downloads
Cite This
Ni - MH batteries have superior properties which are long cycle life, low maintenance, high power, light weight, good thermal performance and configurable design. Hydrogen storage alloys play a dominant role in power service life of a Ni - MH battery and determining the electrochemical properties of the battery. LaNi5, belonging to the CaCu5 crystal structure type, satisfy many of the properties. The most important property of LaNi5 is fast hydrogen kinetics. Recently, CaNi5, belonging to same crystal type, has taken some attention due to its low cost, higher hydrogen storage capacity, good kinetic properties. However, the main restriction of its use is its very low cycle life. The aim of the study is to obtain a more stable structure providing higher cycle life by the addition of different alloying elements. In this study, the effect of sixteen alloying elements (Mn, Sm, Sn, Al, Y, Cu, Si, Zn, Cr, Mg, Fe, Dy, V, Ti, Hf and Er) on cycle life was investigated. Sm, Y, Dy, Ti, Hf and Er were added for replacement of Ca and Mn, Sn, Al, Cu, Si, Zn, Cr, Mg, Fe and V were added for replacement of Ni. Alloys were produced by vacuum casting and heat treating followed by ball milling. The cells assembled, using the produced active materials as anode, which were cycled for charging and discharging. As a result, replacement of Ca with Hf, Ti, Dy and Er, and replacement of Ni with Si and Mn were observed to show better cycle durability rather than pure CaNi5.
Subject Keywords
Nickel
,
Nickel
,
Nickel alloys.
,
Nickel-metal hydride batteries.
URI
http://etd.lib.metu.edu.tr/upload/12614676/index.pdf
https://hdl.handle.net/11511/21965
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Production and characterization of CaNi₅-xMx compounds for metal hydride batteries
Öksüz, Berke; Aydınol, Mehmet Kadri; Department of Metallurgical and Materials Engineering (2012)
Ni - MH batteries have superior properties which are long cycle life, low maintenance, high power, light weight, good thermal performance and configurable design. Hydrogen storage alloys play a dominant role in power service life of a Ni - MH battery and determining the electrochemical properties of the battery. LaNi5, belonging to the CaCu5 crystal structure type, satisfy many of the properties. The most important property of LaNi5 is fast hydrogen kinetics. Recently, CaNi5, belonging to same crystal type,...
Production and characterization of carbon-silicon nanocomposite anode materials for secondary lithium batteries
Miser, Burcu; Aydınol, Mehmet Kadri; Parlak, Mehmet; Department of Micro and Nanotechnology (2017)
Amongst other anode materials, silicon has the highest capacity (for Li22Si5: 4200 mAh.g-1), whereas; the commonly used graphite has only a capacity of 320 mAh.g-1. Although this property of silicon makes it a worthwhile subject, there are technical issues which makes it difficult for commercial use. In this study, the aim is to investigate methods of producing silicon anode materials from a readily available powder via top down nano-particle forming methods for next generation lithium ion batteries which h...
A phase-field model for chemo-mechanical induced fracture in lithium-ion battery electrode particles
MIEHE, C.; Dal, Hüsnü; SCHAENZEL, L. -M.; RAINA, A. (2016-06-01)
Capacity fade in conventional Li-ion battery systems due to chemo-mechanical degradation during charge-discharge cycles is the bottleneck in high-performance battery design. Stresses generated by diffusion-mechanical coupling in Li-ion intercalation and deintercalation cycles, accompanied by swelling and shrinking at finite strains, cause micro-cracks, which finally disturb the electrical conductivity and isolate the electrode particles. This leads to battery capacity fade. As a first attempt towards a reli...
Synthesis of Graphene-MoS2 composite based anode from oxides and their electrochemical behavior
Sarwar, Saira; Karamat, Shumaila; Saleem Bhatti, Arshad; Aydınol, Mehmet Kadri; Oral, Ahmet; Hassan, Muhammad Umair (2021-10-16)
High energy storage capacity and longer life span make rechargeable Li-ion batteries the first choice in portable electronics. Here, a graphene-MoS2 composite material is investigated as a potential electrode material which enhances the electrochemical storage ability of the Li-ion batteries (LIBs). Graphene-MoS2 composite is synthesized from graphene oxide (GO), molybdenum trioxide and thiourea via hydrothermal route. Formation of graphene-MoS2 composite (molar ratio 1:2) is confirmed by X-ray diffraction ...
Synthesis of benzotriazole bearing donor acceptor type electroactive monomers towards high optical contrast and fast switching electrochromic materials
Balan, Abidin; Toppare, Levent Kamil; Department of Chemistry (2009)
Synthesis of new electroactive monomers are highly desired since these compounds can be utilized as active layers in many device applications such as ECDs, LEDs and solar cells. EDOT (3,4 ethylenedioxythiophene) and thiophene bearing polymers were also proven to be excellent candidates as electrochromic materials. Benzotriazole can be coupled to EDOT and thiophene to yield materials that can be polymerized to give donor acceptor type polymers. These materials are promising candidates as components in fast s...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
O. Muğan, “Production and characterization of CaNi₅-xMx compounds for metal hydride batteries,” M.S. - Master of Science, Middle East Technical University, 2012.